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ABSTRACT
In the era of smartphones and mobile computing, many pop-
ular applications such as Facebook, twitter, Gmail, and even
Angry birds game manage their data using SQLite. This
is mainly due to the development productivity and solid
transactional support. For transactional atomicity, however,
SQLite relies on less sophisticated but costlier page-oriented
journaling mechanisms. Hence, this is often cited as the
main cause of tardy responses in mobile applications.

Flash memory does not allow data to be updated in place,
and the copy-on-write strategy is adopted by most flash stor-
age devices. In this paper, we propose X-FTL, a trans-
actional flash translation layer(FTL) for SQLite databases.
By offloading the burden of guaranteeing the transactional
atomicity from a host system to flash storage and by tak-
ing advantage of the copy-on-write strategy used in mod-
ern FTLs, X-FTL drastically improves the transactional
throughput almost for free without resorting to costly jour-
naling schemes. We have implemented X-FTL on an SSD
development board called OpenSSD, and modified SQLite
and ext4 file system minimally to make them compatible
with the extended abstractions provided by X-FTL. We
demonstrate the effectiveness of X-FTL using real and syn-
thetic SQLite workloads for smartphone applications, TPC-
C benchmark for OLTP databases, and FIO benchmark for
file systems.

Categories and Subject Descriptors
H.2.4 [DATABASE MANAGEMENT]: Systems—
Transaction procesing

General Terms
Design, Performance, Reliability
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1. INTRODUCTION
An update action in a database system may involve mul-

tiple pages, and each of the pages in turn usually involves
multiple disk sectors. A sector write is done by a slow me-
chanical process and can be interrupted by a power failure.
If a failure occurs in the middle of a sector write, the sec-
tor might be only partially updated. A sector write is thus
considered non-atomic by most contemporary database sys-
tems [4, 16].

Atomic propagation of one or more pages updated by a
transaction can be implemented by shadow pages or physical
logging. However, the cost will be considerable during nor-
mal processing. Most commercial database systems adopt a
solution based on physiological logging, which is more I/O
efficient in handling updates and more flexible in the locking
granularity. On the other hand, SQLite, developed as an em-
bedded database system, faces additional challenge to limit
the scale of its code base. Hence SQLite relies on costlier
but less sophisticated mechanisms similar to shadow paging.

In order to support transactional atomicity, SQLite pro-
cesses a page update by copying the original content to a
separate rollback file or appending the new content to a sep-
arate write-ahead log. This is often cited as the main cause
of tardy responses in smartphone applications [11, 12]. Ac-
cording to a recent survey [12], such popular applications
as Facebook, Gmail, twitter, web browsers, and even Angry
birds game manage their data using SQLite on smartphone
platforms like Android, and approximately 70% of all write
requests are for SQLite databases and related files. Consid-
ering the increasing popularity of smart mobile platforms,
improving the I/O efficiency of SQLite is a practical and
critical problem that should be addressed immediately.

Most contemporary mobile devices, if not all, use flash
memory as storage media to store data persistently. Since
flash memory does not allow any page to be overwritten in
place, a page update is commonly carried out by leaving
the existing page intact and writing the new content into a
clean page at another location [9, 13]. This strategy is called
copy-on-write (CoW). Whether it is intended or not, the net
effect of copy-on-write operations by a flash memory drive
remarkably resembles what the shadow paging mechanism
achieves [15]. This provides an excellent opportunity for
supporting atomic update propagation almost for free.

In this paper, we present X-FTL that (1) realizes low-
cost atomic update for individual pages, (2) provides the
awareness of database semantics in page updates to support
the atomicity of transactions, and (3) exposes an extended
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abstraction (and APIs) to not only SQLite but also other
upper layer applications such as a journaling file system.

The key contributions of this work are summarized as fol-
lows.

• X-FTL provides an extended abstraction at the storage
device level and guarantees the atomicity of transac-
tions and the durability of committed changes almost
at no cost. SQLite and journaling file systems can
build on X-FTL to minimize the overhead of transac-
tional support and metadata journaling.

• When running on top of X-FTL, a journaling file sys-
tem may turn journaling off and can still achieve the
same level of consistency provided by full journaling.
This indicates that a lightweight transactional file sys-
tem can be developed without taking extra burden for
duplicate data and metadata writes and synchronous
write ordering [10, 23, 24].

• We have implemented X-FTL on an open SSD devel-
opment hardware platform called OpenSSD by enhanc-
ing its FTL code with the X-FTL features presented in
this paper. We have demonstrated SQLite and ext4

file system can take advantage of X-FTL with only
minimal changes in their code.

The rest of the paper is organized as follows. Section 2
describes the transactional support and I/O efficiency of
SQLite and presents the motivation of our work. Section 3
reviews the existing techniques for atomic updates and jour-
naling file systems and flash translation layer (FTL) ap-
proaches. In Section 4, we present the design principles
and the architecture of X-FTL and discuss its advantage for
SQLite databases. Section 5 presents the implementation
details of the X-FTL architecture. In Section 6, we evalu-
ate the performance impact of X-FTL on SQLite databases
as well as file systems. Lastly, Section 7 summarizes the
contributions of this paper.

2. MOTIVATION

2.1 Transactional Support in SQLite
For its portability on a wide spectrum of platforms,

SQLite makes a few assumptions on the underlying hardware
and operating system. While some of them are optimistic,
some are pessimistic. One of the critical and pessimistic as-
sumptions is that a disk sector write is not atomic [4]. If
a failure occurs in the middle of a sector write, it might
be that part of the sector is modified, while the rest is left
unmodified.

In order to support the atomicity of transaction execution
without the atomicity of a sector write, SQLite operates usu-
ally in either rollback mode [4] or write-ahead log mode [6].
If a transaction updates a page in rollback mode, the orig-
inal content of the page is copied to the rollback journal
before updating it in the database, so that the change can
always be undone if the transaction aborts. The opposite
is done in write-ahead log mode. If a transaction updates
a page in write-ahead log mode, the original content is pre-
served in the database and the modified page is appended
to a separate log, so that any committed change can always
be redone by copying it from the log. The change is then
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Figure 1: SQLite Journal Modes

later propagated to the database by periodical checkpoint-
ing. The delayed propagation in write-ahead log mode allows
a transaction to maintain its own snapshot of the database
and enable readers to run fast without being blocked by a
writer.

Other notable features of SQLite are summarized be-
low for the background information [4]. SQLite is a soft-
ware library that implements a serverless transactional SQL
database engine. It manages tables and indexes in a sin-
gle database file on an underlying file system such as ext4.
SQLite adopts force and steal policies for buffer manage-
ment. When a transaction commits, all the pages updated
by the transaction are force-written to a stable storage us-
ing the fsync command. When the buffer runs out of free
pages, even uncommitted updates can be written to a stable
storage.

2.2 I/O Efficiency of SQLite
The pessimistic side of SQLite further assumes that, for a

file that grows in size, the file size is updated before the file
content. This requires SQLite to do extra work to ensure
that the metadata and content of a file are written to per-
sistent media in particular order, so that a failure between
the two events does not cause inconsistency in the database.
One popular approach to imposing write ordering is to exe-
cute a sync operation as a barrier between a pair of ordered
write operations [22].1 This may be the reason why SQLite
is criticized for excessive use of the sync file system call [11].

SQLite assumes that a file deletion is atomic. This as-
sumption is essential for SQLite to maintain consistency in
the database, because the presence of a hot rollback journal
in rollback mode, for example, indicates that a transaction
was committing when a failure occurred. This assumption
cannot be made without support for atomic update of file
metadata, which SQLite again assumes is guaranteed by the
metadata journaling of an underlying file system.

1Most SCSI or SATA drives support the force unit access
(FAU) command to bypass the internal cache for reading
and writing.
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The I/O behaviors of SQLite, as depicted in Figure 1,
depend on which mode it runs in. If SQLite runs in rollback
mode, a journal file is created and deleted whenever a new
transaction begins and ends. This increases I/O activities
significantly for updating metadata. If SQLite runs in write-
ahead log mode, a log file is reused and shared by many
transactions until the log file is cleared by a checkpointing
operation. Thus, the overhead of updating metadata is much
lower when SQLite run in write-ahead log mode. Another
aspect of I/O behaviors is how frequently files are synced.
SQLite invokes fsync system calls more often when it runs
in rollback mode than in write-ahead log mode. Since the
header page of a journal file requires being synced separately
from data pages, SQLite needs to invoke at least one more
fsync call for each committing transaction.

2.3 Problem Statement
SQLite relies heavily on the use of rollback journal files

and write-ahead log as well as frequent file sync operations
for transactional atomicity and durability. The I/O ineffi-
ciency of this strategy is the main cause of tardy responses
of applications running on SQLite. Our goal is to achieve
I/O efficient, database-aware transactional support at the
flash based storage level so that SQLite and similar appli-
cations can simplify their logics for transaction support and
hence run faster. We have developed a new flash translation
layer (FTL) called X-FTL. With X-FTL, SQLite and other
upper layer applications such as a file system can achieve
transactional atomicity and durability as well as metadata
journaling with minimum overhead and redundancy.

3. RELATED WORK
By taking advantage of the copy-on-write mechanism of

flash storage, X-FTL can efficiently guarantee that all the
pages updated by a transaction are successfully propagated
or no pages are written at all upon a failure. In this regard,
three types of existing work are closely related to X-FTL:
shadow paging technique [15], journaling file systems [7, 19,
21, 25], and a few FTL techniques for atomic write of file
system journal data [17, 18, 20]. Now, let us briefly explain
each work and compare it with X-FTL.

3.1 Shadow Paging Technique
In the shadow paging approach [15], when a transaction

updates pages, a new version of each page is created, instead
of overwriting the existing one. The reason for preserving
the old copy (called shadow page) is to make page updates
atomic by replacing a long page write process with a short
pointer manipulation. Hence, the database system needs to
keep two page tables: one for new versions and the other for
old copies. In fact, each mode of rollback and write-ahead
log in SQLite can be regarded as a variant of this shadow
paging technique.

In this respect, our X-FTL is conceptually no less than
offloading the shadow paging overhead from the database
engine to the flash storage layer. This simple offloading
opens up new opportunities for implementing the transac-
tional atomicity inside flash storage much more efficiently
because most contemporary FTLs rely on copy-on-write for
update operations. That is, by extending an existing FTL
which does not overwrite an old copy, atomic update of pages
can be achieved at the flash storage level at no additional
cost.

Besides, with X-FTL, unlike the traditional shadow pag-
ing technique, SQLite-like applications are relieved from the
burden of managing two separate page tables and reclaiming
the space occupied by old copies.

3.2 Journaling File Systems
Modern file systems take a journaling approach to guar-

antee the consistency of both metadata and data [10, 19,
21]. The consistency provided by the journaling file systems
is aimed at updating a fixed set of pages atomically, which is
not semantically sufficient to support more general database
transactions. Recently, a few flash-aware journaling file sys-
tems such as JFFS [25] and YAFFS [7] have been developed.
These file systems, when writing data or metadata to stor-
age upon explicit sync calls by users or upon periodic flush,
do not overwrite the original copies. Instead, the new copies
are saved in a separate journal area until they are propa-
gated to their original location by checkpointing. This way
they achieve data consistency at the expense of increased
IOs required for journaling.

In contrast, X-FTL provides at least the same level of
consistency as provided by modern journaling file systems
and can boost transaction performance significantly without
resorting to redundant journal files.

3.3 FTL Approaches
Recently, mainly from the storage and file system com-

munities, a few interesting suggestions have been made to
support atomic updates on flash-based storage devices [17,
18, 20]. Like journaling file systems described above, those
FTL approaches focus more on updating a fixed set of pages
atomically.

The atomic write FTL by Park et al. [18], among the
first studies for supporting atomic write in flash storage,
exploits the out-of-place update characteristics of flash stor-
age. In particular, this work deals with supporting atomic
write of multiple pages specified in a single write call like
write(p1, .., pn). Each write call leaves a commit record
after writing all the data pages so that they can be rolled
back together if necessary. This approach was recently ap-
plied to FusionIO flash SSDs, which helped MySQL achieve
atomicity of multiple page writes [17].

Prabhakaran et al. proposed a transactional FTL called
txFlash to support atomic writes for file system journal-
ing [20]. In addition to supporting atomicity of mult-page
writes, TxFlash provides isolation among multiple atomic
write calls by ensuring that no conflicting writes are issued.
It relies on a new commit protocol called Simple Cyclic Com-
mit (SCC) to eliminate the need of a separate commit record
for each write, which would impose a write ordering and ad-
ditional latency.

The common limitation of these approaches is that the
atomicity of a multi-page write can be supported only on a
per-call basis or only when the whole set of pages are flushed
from the buffer pool at once. This requirement clearly con-
tradicts the steal policy of buffer management SQLite and
most database systems adopt for performance reasons. Un-
like these FTL approaches, X-FTL allows for any data page
to be written at any time and still supports atomicity of any
group of pages belonging to a transaction. Consequently, we
can realize flexible and efficient support for general trans-
action semantics with X-FTL, which can also be used to
provide atomic writes required in a journaling file system.
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3.4 Different Media
It has been recently reported that SQLite database is one

of the main performance bottlenecks in smartphone applica-
tions [11, 12]. However, no solution has been proposed yet
to address the performance problem of SQLite, except for a
few suggestions that DRAM or PRAM be utilized as storage
for shorter latency and higher bandwidth instead of flash-
based storage [11]. The X-FTL solution we propose assumes
only flash storage which is more common, more economical
and has strong market ground. In this respect, X-FTL is,
as far as we know, the first flash-based approach to tackling
SQLite performance concerns.

4. ARCHITECTURE OF X-FTL
In the previous sections, we have reviewed how SQLite

and a journaling file system achieve atomic page updates on
a storage device that does not support it natively, and iden-
tified heavy redundancy in page writes (required by SQLite
in the rollback or write-ahead log mode and by a file sys-
tem for data and metadata journaling) as the main cause
of long latency in update operations. In this section, we
present a new method called X-FTL that supports atomic
page updates at the flash based storage level, so that upper
layers such as SQLite and a file system can be freed from
the burden of heavy redundancy of duplicate page writes.
The design principles and the abstractions of X-FTL will be
presented.

4.1 Design Principles
In order to have a flash based storage layer provide a

transactional support, we have designed a new flash trans-
lation layer called X-FTL. The design objectives of X-FTL
are threefold. First, X-FTL takes advantage of the copy-on-
write mechanism adopted by most flash-based storage de-
vices [9], so that it can achieve transactional atomicity and
durability at low cost with no more redundant writes than
required by the copy-on-write operations themselves. This is
especially important for SQLite that adopts the force policy
for buffer management at commit time of a transaction. Sec-
ond, X-FTL aims at providing atomic propagation of page
updates for individual pages separately or as a group without
being limited to SQLite or any specific domain of applica-
tions. So the abstractions of X-FTL must introduce minimal
changes to the standards such as SATA, and the changes
must not disrupt existing applications. Third, SQLite and
other upper layer applications should be able to use X-FTL
services without considerable changes in their code. In par-
ticular, required changes, if any, must be limited to the use
of extended abstractions provided by X-FTL.

This approach is novel in that it attempts to turn the
weakness of flash memory (i.e., being unable to update in
place) into a strong point (i.e., inherently atomic propaga-
tion of changes). Unlike the existing FTLs with support for
atomic write [17, 18, 20], X-FTL supports atomicity of trans-
actions without contradicting the steal policy of database
buffer management at no redundant writes. This enables
low-cost transactional support as well as minimal write am-
plification, which extends the life span of a flash storage
device.

4.2 X-FTL Architecture and Abstractions
In the core of X-FTL is the transactional logical-to-

physical page mapping table (or X-L2P in short) as shown

in Figure 2. The X-L2P table is used in combination with
a traditional page mapping table (or L2P in short) main-
tained by most FTLs. The L2P and X-L2P tables appear
in the left and right sides of Figure 2, respectively. In or-
der to provide transactional support at the storage level, we
add to it more information such as the transaction id of an
updater, the physical address of a page copied into a new
location, and the status of the updater transaction. This
will allow us to have full control over which pages can be
reclaimed for garbage collection. Specifically, an old page
invalidated by a transaction will not be garbage-collected
as long as the updater transaction remain active, because
the old page may have to be used to rollback the changes in
case the transaction gets aborted. If the updater transaction
commits successfully, the information on the old page can
be released from the X-L2P table so that it can be reclaimed
for garbage collection.

Obviously the additional information on transactions
must be passed from transactions themselves to the flash-
based storage, but it cannot be done through the standard
storage interface such as SATA. We have extended the SATA
interface so that the transaction id can be passed to the stor-
age device by read and write commands. Besides, two new
commands, commit and abort, have been added to the SATA
interface so that the change in the status of a transaction
can also be passed. The extensions we have made to the
SATA interface are summarized below.

write(tid t, page p) The write command of SATA is aug-
mented with an id of a transaction t that writes a logi-
cal page p. This command writes the content of p into
a clean page in flash memory and add a new entry
(t, p, paddr, active) into the X-L2P table, where paddr
is the physical address of the page the content of p is
written into.

read(tid t, page p) The read command of SATA is also
augmented with an id of a transaction t that reads a
logical page p. This command reads the copy of p from
the database snapshot of transaction t. Depending on
whether t is the transaction that updated p most re-
cently or not, a different version of p may be returned.

commit(tid t) This is a new command added to the SATA
interface. When a commit command is given by a
transaction t, the physical addresses of new content
written by t become permanent and the old addresses
are released so that the old page can be reclaimed for
garbage collection.

abort(tid t) This is a new command added to the SATA
interface. When an abort command is given by a trans-
action t, the physical addresses of new content written
by t are abandoned and those pages can be reclaimed
for garbage collection.

Note that the SATA command set is not always available
for SQLite and other applications that access files through
a file system. Instead of invoking the SATA commands di-
rectly from SQLite, we have extended the ioctl and fsync

system calls so that the additional information about trans-
actions can be passed to the storage device through the file
system.
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Figure 2: X-FTL Architecture: an FTL for Transactional Atomicity

4.3 X-FTL Advantages for SQLite
When SQLite runs in rollback mode, it creates a journal

file for every transaction when it begins so its changes can
be rolled back if necessary, and deletes the journal file when
the transaction ends. The amount of overhead incurred by
frequent file creations and deletions is non-trivial. Whenever
a page is about to be updated by a transaction, the old
content of the page is synchronously copied into a journal
file. When a transaction commits, fsync system calls must
be invoked for both the log and database files to guarantee
the durability of the transaction. This makes SQLite execute
the costly fsync system call excessively.

When SQLite runs in write-ahead log mode, for a page
that is about to be updated by a transaction, the new con-
tent of the page is written to the log file. So, reading a
certain page may require accessing both the log file and the
database file to find the correct version of the page. This
process can be facilitated by an in-memory index but read-
ing the two files may still be unavoidable and the overhead
is not trivial when it happens.

With X-FTL that supports atomic page updates at the
storage device level, the runtime overhead of SQLite can
be reduced dramatically. First, SQLite does not have to
write a page (physically) more than once for each logical
page write. Second, a single invocation of fsync call will be
enough for each committing transaction because all the up-
dates are made directly to the database file. Consequently,
the I/O efficiency and the transaction throughput of SQLite
can improve significantly for any workload with non-trivial
update activities.

The current version (3.7.10) of SQLite supports the atom-
icity of a transaction that updates multiple database files
but it is awkward or incomplete [4, 6]. When a transaction
updates two or more database files in rollback mode, a mas-
ter journal file, in addition to regular journal files, should
be created to guarantee the atomic propagation of the en-
tire set of updates made against the database files [4]. With

X-FTL, in contrast, SQLite keeps trace of the multi-file up-
dates in the X-L2P table under the same transaction id and
supports the atomicity of the transaction without additional
effort.

5. IMPLEMENTATIONS
This section presents the implementation details of the X-

FTL architecture depicted in Section 4. The dominant por-
tion of the X-FTL implementation is made into the firmware
of the OpenSSD development board by cross-compiling the
source code written in C. As an intermediary between X-
FTL and SQLite, the file system accepts the information
of active transactions through the fsync and ioctl system
calls and passes it to X-FTL via the extended SATA com-
mand set. To carry this out, additional changes are also
made in the system calls and the SATA interface. As will
be described below, the changes made in SQLite is minimal.

We have chosen the ext4 as the underlying file system, as
it is the most common file system in Android platforms and
any improvement in performance by X-FTL would have di-
rect impact on many real-world mobile applications running
on ext4.

5.1 Changes made in SQLite
The original SQLite runs in either rollback or write-ahead

log mode to achieve atomic propagation of updated pages.
However, if SQLite runs on X-FTL, it does not have to run in
either mode. Instead, it can simply turn them off, because
X-FTL supports transactional atomicity and durability at
the storage level. When running in off mode, SQLite applies
changes directly to database pages and the metadata of the
database file. Recall that, even in off mode, the database
buffer is still managed by the steal and force policies.

The force policy can be enforced by simply force-writing
all the pages updated by a committing transaction to the
database using fsync system call of an underlying file sys-
tem. For an aborting transaction, however, the process of
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rolling back the changes made by the transaction is not de-
fined [4] when SQLite runs in off mode. Consequently, an
aborting transaction may leave a database in an inconsistent
state. This is because the steal policy allows an uncommit-
ted change to be propagated to the database and SQLite
does not undo the uncommitted change in the off mode.

Unfortunately, there is no counterpart of the fsync sys-
tem call that can undo changes already written to a file. The
only way to address this problem is to pass the information
of an aborting transaction to X-FTL, so that uncommitted
changes can be rolled back inside a flash-based storage de-
vice. This is done by modifying SQLite such that it invokes
a new system call for an aborting transaction, and this is the
only change we have made to SQLite. The new system call
is implemented in the file system by adding a new request
type ‘abort’ to the ioctl system call.

5.2 Changes made in File System
A file system plays a messenger role in passing the transac-

tional context of database accesses from SQLite to X-FTL.
For example, when a page is updated by a transaction, its
id needs to be passed to X-FTL along with the content of
the page so that X-FTL can keep track of the pages that are
updated by the transaction. When the transaction requests
a read or write operation, it is translated into read(t,p) or
write(t,p), where t and p are the id of the transaction and
the logical address of a page, respectively. As will be de-
scribed in Section 5.3, read(t,p) and write(t,p) are new
commands added to the standard SATA command set. Note
that transaction ids are managed by the file system instead
of SQLite. This implementation decision is made because
SQLite does not run as a stand-alone server but instead is
linked to an application as a library, and thus it is difficult
for applications to manage transaction ids globally.

Similarly, a commit or abort command is passed from a
transaction to X-FTL via the file system. When a transac-
tion t is about to commit, the file system is notified of that
via an fsync system call invoked for the transaction so that
all updated pages are force-written to the database. The
fsync system call is translated to one or more write(t,p)

commands for all updated pages. This is then followed by
a commit(t) command passed to X-FTL via the extended
SATA interface. We have added a new commit(t) command
to the SATA command set by extending the parameter set
of trim command.

When a transaction t is about to abort, the file system
is notified of that via an ioctl system call given for the
transaction. Since SQLite adopts the steal policy for buffer
management, some of the pages updated by the transaction
may have already been propagated to the database, while
the rest may still be cached in the file system buffer. Un-
doing the cached changes is done simply by dropping them
from the file system buffer. To rollback the changes writ-
ten to the database, an abort(t) command is issued to X-
FTL. Similarly to the commit(t) command, the abort(t)

command is implemented by extending the parameter set of
trim command.2 The detailed implementation of commit(t)
and abort(t) commands is described in the next section.

2An eMMC flash memory card, commonly used in smart-
phones, allows to add application-specific commands to the
storage interface [5]. With an eMMC card, the commit and
abort commands could be added without modifying the trim
command.

Figure 3: OpenSSD connected to host system

5.3 Changes made in FTL
In order to prototype X-FTL, we have implemented X-

FTL on the OpenSSD platform. OpenSSD is an SSD de-
velopment platform that is made publicly available by the
OpenSSD Project to promote research and education on
the recent flash-based solid state drive technology [3]. The
OpenSSD platform is based on the Barefoot controller, which
is an early commercial product by Indilinx. Thus it has
the same performance characteristics as a commercial SSD
equipped with the Barefoot controller. OpenSSD adopts a
page mapping scheme for flash memory management like
most contemporary SSD products and eMMC flash memory
cards. The OpenSSD board is connected to a host system
through the SATA interface as shown in Figure 3.

The X-L2P table is maintained persistently in the flash
memory of the OpenSSD development board. The most
recent changes are cached in DRAM until they are commit-
ted. As shown in Figure 2, the X-L2P table stores an entry
(t, lap, paa, s) for each page p updated by an active trans-
action t, where lap is the logical address of p, pap is the
(new) physical address of p, and s is the status of transac-
tion t. The physical address pap is determined by the FTL
when the new content of p is written to a free page in flash
memory. The value of s can be active, committed or aborted.
Note that a new entry for page p is added to the X-L2P
table only when p is updated for the first time. If the same
page p is updated again, the existing entry is just updated
with a new physical address.

Each entry in the X-L2P table serves dual purposes. First,
it keeps track of the latest version of a page while main-
taining the older but committed copy intact so that a cor-
rect version of the page can be read by concurrent transac-
tions. Specifically, when a read(t,p) command is given, if
t matches the transaction id of an entry of p in the X-L2P
table, then the copy of p whose physical address in the entry
is returned. Otherwise, the older committed copy is found
in the L2P table and returned to the reader. Second, the en-
try of p in the X-L2P table prevents the latest uncommitted
copy of p from being garbage-collected. When a flash mem-
ory block is picked up for garbage collection, the pages in
the block are considered valid and copied into a new block if
their physical addresses are found in the X-L2P table. That
is, a page is considered invalid only when it is not found in
either the L2P table or the X-L2P table.
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Figure 4: Commit procedure in X-FTL

When a commit(t) command is received (via a trim com-
mand), all the pages updated by t must have been written
to flash memory persistently and their physical addresses
must have been saved in the X-L2P table. Thus, the only
remaining steps are to change the status field of each entry
from active to committed, and flush all the entries created
by t persistently to flash memory. From this moment on,
transaction t is considered committed, and the X-L2P table
entries with a committed status become available for reuse
by other transactions. Besides, the L2P table is updated
so that its entries point to the committed physical copies
of the pages updated by t. Note that the propagation of
committed changes from the X-L2P table to the L2P table
is idempotent and it is the original FTL that is responsible
for backing the L2P table up persistently in flash memory
and getting prepared for crash recovery.

The X-L2P table can be configured to have any number
of entries, but it is very small in the current implementa-
tion – either 500 entries (8KB) or 1000 entries (16KB).3

This is because the minimum required number of entries is
a few tens due to the relatively small number of concurrent
transactions running for SQLite databases and each X-L2P
entry is only 16 bytes long. Thus, when a transaction com-
mits, the entire X-L2P table is written to flash memory in
copy-on-write fashion. The physical location of the X-L2P
table is kept track of by a meta-data block in flash memory
reserved by an FTL. We assume that updating the physi-
cal location in the meta-data block is done atomically. The
commit procedure of X-FTL is summarized in Figure 4.

Processing an abort(t) command is much simpler and
done in two steps. First, for all t’s entries in the X-L2P
table, the status fields are changed from active to aborted.
Second, all the corresponding pages in flash memory are
invalidated.

5.4 Recovery
For the recovery of a database, we consider two types of

common failures. The first type of a failure occurs when
SQLite is terminated abnormally but without failing the en-

3Most eMMC flash memory cards are equipped with 512KB
SRAM, 128KB of which is used for maintaining the L2P
mapping table. We believe it is not so impractical to store
an X-L2P table of 8KB ∼ 16KB in the SRAM of an eMMC
card.

tire system. The other type occurs when the entire system
fails, for example, by a power outage.

In the first case, since the file system and X-FTL are still
functioning normally, the system kernel can detect the file
opened by a killed process. Then, using the abort logic
described in Sections 5.2 and 5.3, the file system drops all
the dirty pages of the file from the file system cache, and X-
FTL rolls back all the uncommitted updates that are already
written to the database file.

In the second case, on a system reboot, both the L2P and
X-L2P tables are loaded from the flash memory to determine
the status of transactions killed by a system crash. All the
X-FTL table entries with a committed status are reflected to
the L2P table. This operation is idempotent and the only
step required to ensure durability of all recently committed
transactions. Propagation of committed changes (i.e., up-
dated pages) must have been done already to the database
for all committed transactions by the commit logic described
in Section 5.3. For an incomplete transaction at the time of a
crash, all the uncommitted changes are undone by the same
abort logic described above.

6. PERFORMANCE EVALUATION
In this section, we present the performance evaluation

carried out to analyze the impact of X-FTL on SQLite as
well as a file system. To understand the impact on SQLite,
we picked three different database workloads. We then ran
SQLite in rollback and write-ahead log modes on top of the
(unchanged) ext4 file system with the OpenSSD board run-
ning the original FTL. We also ran the modified SQLite on
top of the ext4 file system with the changed system calls
with the OpenSSD board running X-FTL. We included a
file system benchmark to evaluate the impact of X-FTL on
the performance of the ext4 file system.

6.1 Experimental Setup
The OpenSSD development platform is equipped with

Samsung K9LCG08U1M flash memory chips. These flash
memory chips are of MLC NAND type with 8KB pages
and 128 pages per block. The OpenSSD has a Barefoot
controller with 87.5MHz ARM processor, and the controller
contains 96KB SRAM to store the firmware and 64MB Mo-
bile SDRAM to store metadata such as mapping tables.
The version of SATA interface is 2.0 that supports 3 Gbps.

The host machine is a Linux system with 3.5.2 kernel run-
ning on Intel core i7-860 2.8GHz processor and 2GB DRAM.
We used the ext4 file system in ordered mode for metadata
journaling when SQLite ran in rollback or write-ahead log
mode. When SQLite ran on X-FTL, the file system jour-
naling was turned off but the changes we added to the file
system (described in Section 5.2) were enabled.

The version of SQLite used in this paper was 3.7.10, which
supports both rollback and write-ahead log modes. The page
size was set to 8KB to match the page size of the flash
memory chips installed on the OpenSSD board.

6.2 Workloads
We used three database workloads and a file system

benchmark. The database workloads are a synthetic work-
load, a set of traces from and a popular benchmark for An-
droid smartphones, and the TPC-C benchmark. The Flexi-
ble I/O (FIO) was used as a file system benchmark.
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Figure 5: SQLite Performance (x1,000 Synthetic Transactions)

Mode
Host-side FTL-side

SQLite
File System Total Counts fsync calls Write Read GC Erase

DB Journal
RBJ 6,230 7,222 15,987 29,439 2,999 243,639 9,792 756 2,044
WAL 3,523 5,754 3,646 12,923 1,013 92,979 3,472 409 897

X-FTL 5,211 0 994 6,205 994 33,239 2,011 115 243

Table 1: I/O Count (# of updated pages per transaction = 5, GC validity = 50%)
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(b) Garbage collection count

Figure 6: I/O Activities inside OpenSSD (# of updated pages per transaction = 5)

Synthetic This workload consists of a partsupply table
created by the dbgen tool of the TPC-H benchmark.
This table contains 60,000 tuples of 220 bytes each.
Each transaction reads a fixed number of tuples using
random partkey values, updates the supplycost field
of each tuple, and commits.

Android Smartphone This workload consists of traces
obtained by running four popular applications on an
Android 4.1.2 Jelly Bean SDK, namely, RL Bench-
mark [2], Gmail, Facebook, and a web browser. RL
Benchmark is a popular benchmark used for perfor-
mance evaluation of SQLite on Android platforms. We
modified the source code of SQLite to capture all the
transactions and their SQL statements.

TPC-C The DBT2 tool was used for TPC-C benchmark-
ing with 10 warehouses [1, 14]. Two separate work-
loads, mix and read-intensive, were created by adjust-

ing the ratio of five transaction types. Since the locking
granularity of SQLite is a database file, the number of
database connections was set to one in order to avoid
frequently aborting update transactions.

File System Benchmark The Flexible I/O (FIO) bench-
mark is commonly used to test the performance of file
and storage systems [8]. It spawns a number of threads
or processes doing a particular type of I/O operations
as specified by the user parameters. This benchmark
was added to evaluate the effects of X-FTL on the ran-
dom write performance of a file system.

6.3 Run-Time Performance
This section demonstrates the effectiveness of X-FTL by

comparing the performance of SQLite with and without X-
FTL. Similarly, the performance of ext4 was tested with and
without X-FTL for file system benchmark. We use the RBJ,
WAL and X-FTL symbols to denote the execution of SQLite
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RLBenchmark Gmail Facebook WebBrowser
# of database files 1 2 11 6
# of tables 3 31 72 26
# of queries 82,234 15,533 4,924 7,929
# of select queries 5,200 3,540 1,687 1,954
# of join queries 0 1,381 28 1,351
# of insert queries 51,002 7,288 2,403 1,261
# of update queries 26,000 889 430 1,813
# of delete queries 2 2,357 117 1,373
Average updated pages per transaction 3.31 4.93 2.29 2.95
# of DDL/SQLite commands 30 78 259 177

Table 2: Analysis of Android Smartphone Traces

in rollback mode, write-ahead log mode and with X-FTL
enabled, respectively. Each performance measurement pre-
sented in this section was an average of five runs or more.
The standard deviation is also presented as an error bar
whenever it was large enough to be visible in the graph.

6.3.1 Synthetic workload
In the synthetic workload, we varied the number of up-

dates requested by a transaction from one to 20, and 1,000
transactions were executed for each fixed number of updates.
To evaluate the effect of garbage collections by FTL, we con-
trolled aging of the OpenSSD flash memory chips such that
the ratio of valid pages carried over by garbage collection
was approximately 30%, 50% or 70%.

Figure 5 shows the elapsed times of SQLite when it ran
in rollback or write-ahead log mode on the original FTL of
the OpenSSD and when it ran in off mode on X-FTL under
various configurations. As is shown clearly in Figure 5(b), X-
FTL helped SQLite process transactions much faster than
write-ahead log and rollback modes by 3.5 and 11.7 times.
The standard deviation of elapsed times was 6.04% on aver-
age.

The considerable gain in performance was direct reflection
of reductions in the number of write operations and fsync

system calls. Recall that, with the force policy, SQLite force-
writes all the updated pages when a transaction commits.
Table 1 compares rollback and write-ahead log modes with X-
FTL with respect to the number of writes and fsync calls.
In the case of rollback, in particular, both numbers were
very high. This is because SQLite had to create and delete
a journal file for each transaction and consequently had to
use fsync call very frequently. In write-ahead log mode,
SQLite wrote twice as many pages as running it with X-
FTL, because it had to write pages to both log and database
files.

Table 1 drills down the I/O activities further for the case
when the number of pages updated per transaction was five.
In the ‘Host-side’ columns, we counted the number of page
writes requested by SQLite and the number of metadata
page writes requested by the file system separately as well as
the total number of fsync calls. In the ‘FTL-side’ columns,
we counted the number of pages written and read (including
those copied-back internally in the flash memory chips) as
well as the frequencies of garbage collection and block erase
operations. Garbage collection is always done for an indi-
vidual flash memory block. The block erase count includes
the data blocks garbage collected and the metadata blocks
erased by FTL. Figure 6 visualizes two key measurements
from the ’FTL-side’ column in Table 1 in bar charts: (a) the
number of pages written and (b) the frequencies of garbage
collection. Figures 5 and 6 show that the trend in elapsed

times among the three modes is consistent with the trend in
the I/O activities.

In rollback mode, each transaction writes 5 data pages and
one header page to the journal file. This incurs two fsync

calls, one for data pages and the other for a head page.
When it commits, the transaction writes 5 data pages and
one header page to the database file, which is followed by a
single fsync call.

Similarly, in write-ahead log mode, each transaction writes
5 data pages and one header page to the log file. Then
the transaction invokes a single fsync call before it com-
mits. The propagation of the changes to the database file,
however, is not done until a checkpointing operation is trig-
gered. Since SQLite carries out checkpointing every 1,000
page writes by default, a total of five checkpointing opera-
tions were done for 1,000 transactions. The number of page
writes requested for the database file was less than 5,000,
because pages updated more than once are flushed to the
storage only once by a checkpointing operation.

When SQLite ran with X-FTL, the total number of page
writes requested by SQLite and the file system was about
a half of that for write-ahead log mode, because SQLite did
not have to write anything to the log file.

6.3.2 Android Smartphone Workload
The four Android smartphone traces, whose characteris-

tics are summarized in Table 2, were replayed with SQLite
on the OpenSSD board. SQLite ran in rollback mode, write-
ahead log mode or off mode with X-FTL. In Figure 7, we
measured the elapsed time taken by SQLite to process each
workload completely. Since the performance gap between
the rollback and write-ahead log modes was similar to that
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observed in the synthetic workload, we did not include the
elapsed time of rollback mode for the clarity of presentation.
Across all the four traces, SQLite performed 2.4 to 3.0 times
faster when it ran with X-FTL than when it ran in write-
ahead log mode. These results match the elapsed times and
the trend of I/O activities observed in the synthetic work-
loads (shown in Figure 5(b) and Figure 6). The standard
deviation of elapsed times was 5.02% on average.

To provide better insight into the observations, the char-
acteristics of the traces are described below with respect to
database query processing.

RL Benchmark is a write-intensive workload that consists
of 13 different types of SQL statements performed on
a single table with three attributes. The workload
includes roughly 50,000 insertions, 5,000 selections,
25,000 updates, an index creation, and a table drop.

Gmail trace includes common operations such as saving
new messages in the inbox, reading from and searching
for keywords in the inbox. The Gmail application re-
lies on SQLite to capture and store everything related
to messages such as senders, receivers, label names and
mail bodies in the mailstore database file. This trace
includes a large number of insert statements. The
read-write ratio was about 3 to 7 with more writes
than reads.

Facebook trace was obtained from a Facebook applica-
tion that reads news feed, sends messages and uploads
photo files. A total of 11 files were created by the Face-
book application, but fb.db was accessed most fre-
quently by many SQL statements. Similarly to Gmail,
this trace includes a large number of insert statements,
because Facebook uses SQLite to store most of the in-
formation on the screen in a database. In addition,
Facebook stores many small thumbnail images in the
SQLite database as blobs. This makes the number of
updates per transaction tend to be high. The read-
write ratio was about 3 to 7 like the Gmail trace.

Browser trace was obtained while the Android web
browser read online newspapers, surfed several por-
tal sites and online shopping sites, and SNS sites. The
web browser uses SQLite to manage the browsing his-
tory, bookmarks, the titles and thumbnails of fetched
web pages. Since the URLs of all visited web pages are
stored, the history table receives many update state-
ments. In addition, cookie data are frequently inserted
and deleted when web pages are accessed. Thus, the
cookie table also received a large number of update
statements. Among the six files the browser creates,
browser2.db was the dominant target of most SQL
statements as the main database file. Another inter-
esting thing about this trace is that it includes quite a
large number of join queries. The read-write ratio was
about 4 to 6.

6.3.3 TPC-C Benchmark
By adjusting the relative frequencies of the five types of

transactions, we created four separate workloads: write-
intensive, read-intensive, selection-only, and join-only. Ta-
ble 3 shows the configuration of each workload. The TPC-C
benchmark results measured in transactions processed per
minute (tpmC) are summarized in Table 4.

Transaction Delivery Order Payment Stock New
Types Status Level Order
Write-

intensive
4% 4% 43% 4% 45%

Read-
intensive

0% 50% 0% 45% 5%

Selection-
only

0% 100% 0% 0% 0%

Join-only 0% 0% 0% 100% 0%

Table 3: TPC-C Workloads

(measured Write Read Selection Join
in tpmC) intensive intensive only only

WAL 251 3,942 281,856 35,662
X-FTL 582 9,925 277,586 35,888

Table 4: TPC-C Performance

In the write-intensive workload, each transaction updates
two pages on average. The performance gap between X-
FTL and write-ahead log mode was not as wide as what
was observed in the synthetic workload, which is purely up-
date only, but the gain in the transaction throughput was
still considerable. SQLite with X-FTL achieved about 130
percent higher transaction throughput than SQLite in write-
ahead log mode.

In the read-intensive workload, the results were some-
what surprising. The performance gap was even higher in
the read-intensive workload. With X-FTL, SQLite achieved
about 152 percent improvement in transaction throughput
than running in write-ahead log mode. This was due to the
additional overhead incurred for SQLite to retrieve the most
recent version of a page requested by each read. When it ran
in write-ahead log mode, for each page to read, SQLite had
to access the write-ahead log to find the most recent version.
If it is not found in the write-ahead log, then it needs to
be read from the database file. This is a well known prob-
lem common in the database systems that maintain multiple
versions of a data page. This also clearly demonstrates the
advantage of X-FTL, which allows SQLite to run in off mode
without the burden of maintaining and accessing a log file.

In the selection-only or join-only workload, the perfor-
mance of SQLite in write-ahead log mode and with X-FTL
was comparable. This is obviously because, with no pages
updated, SQLite did not have to read from or write into the
log file. Since SQLite uses the nested-loop join algorithm, it
does not create any temporary file for intermediate result.

6.3.4 File System Benchmark
As is described in Section 4, X-FTL supports atomic up-

date propagation not only for SQLite but also for other ap-
plications such as a file system. We used the FIO benchmark
(version 2.0.10) to evaluate the effects of X-FTL on the ran-
dom write performance of a file system.

In this experiment, the average write IOPS was measured
while a single thread updated data pages in a 4GB file ran-
domly for 600 seconds. The size of a page was 8KB. An
fsync system call was invoked every 1, 5, 10, 15, or 20 page
writes to mimic the different sizes of transactions in the syn-
thetic workload. In each test case, the ext4 file system ran
in ordered journaling mode (for metadata only), in full jour-
naling mode (for both data and metadata), or in off mode
with X-FTL enabled. Their throughput measured in IOPS
is shown in Figure 8.
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Figure 9: FIO Benchmark: X-FTL vs. S830 SSD
(with 16 Concurrent Threads)

The IO throughput increased steadily in all the three cases
as the fsync interval increased, obviously because less fre-
quent fsync calls lowered the overhead of force-write oper-
ations. More importantly, the ext4 file system with X-FTL
achieved the highest IO throughput consistently across all
fsync intervals by about 67 to 99% and 240 to 254% over
the ordered and full journaling, respectively. The standard
deviation was 2.34% on average. The full journaling guar-
antees the atomicity of page writes at the expense of writ-
ing each data page twice. The ordered journaling writes a
data page only once but does not guarantee the atomicity of
page writes. Besides, it requires two write barriers to guar-
antee the write order of data pages and metadata [22]. On a
flash based storage device including OpenSSD, a write bar-
rier command stores the mapping table as well as data pages
persistently in flash memory chips. On the other hand, X-
FTL invokes a commit command once as part of a fsync

system call, which plays the same role as a write barrier.
Therefore, the cost of an additional write of mapping table
to flash memory contributed to the gap in IOPS between
X-FTL and the ordered journaling.

To put the results from the OpenSSD development board
in perspective, we repeated the same file system benchmark
with an MLC based SSD, Samsung S830 (128GB), with 16
concurrent threads. Figure 9 shows the I/O throughput of
S830 in ordered and full journaling modes as well as the

I/O throughput of OpenSSD with X-FTL. In comparison
with the results shown in Figure 8, the I/O throughput
of OpenSSD was less than 25% and higher than 35% that
of S830 in ordered and full journaling modes, respectively.
This should not be surprising given that the controller of
OpenSSD is at least one generation older than that of S830.
The standard deviation was 2.00% on average in this exper-
iment.

In summary, X-FTL achieves the level of consistency that
can be achieved by a file system operating in full journaling
mode at the cost even lower than that of ordered journaling
mode.

6.4 Recovery Performance
In order to evaluate recovery performance, the OpenSSD

board was turned off while SQLite was executing the syn-
thetic workloads presented in Section 6.3.1. This test was
repeated in rollback, write-ahead log, and X-FTL modes to
examine the impact of the three execution modes on the
recovery time of SQLite. We measured the time taken to
restart the SQLite database in each mode.

mode Rollback Write-ahead log X-FTL
(msec) 20.1 153.0 3.5

Table 5: SQLite Restart Time

Table 5 presents the average recovery times of three
modes. For each mode, we took the average of restart times
measured from five separate runs. The restart time given
in Table 5 includes the time taken by SQLite to recover the
database in each mode. Note that it does not include the
common time taken by the OpenSSD to recover its FTL
data structures (for example, the L2P table) and the time
taken by the file system to remount the OpenSSD device.
We observed the time taken by each step using a debugging
tool attached to the OpenSSD.

In the case of rollback mode, the recovery time includes
the time taken to carry out two steps. The first is to copy
the old versions of pages updated by active transactions from
the rollback journal file, if exists, to the original database file.
The second is to delete the rollback file for undo purpose.
The number of pages to be copied in this experiment was
approximately ten.

In the case of write-ahead log mode, the recovery time
includes the time taken to copy the latest copies of pages
updated by committed transactions from a write-ahead log
file to the original database file. Because the write-ahead log
file is sized to one thousand pages by default, the recovery
time in write-ahead log mode (153.0 milliseconds) was much
longer than that in rollback mode (20.1 milliseconds).

Since only one SQLite database was updated in the ex-
periment, the recovery times observed in rollback and write-
ahead log modes represent the time to recover the database
when accessed for the first time after the crash. If multiple
databases were running at failure time, each database needs
to be recovered individually.

In the case of X-FTL mode, the recovery steps include
loading the X-L2P table and reflecting the X-L2P table en-
tries with a committed status to the L2P table. All these
steps took only about 3.5 milliseconds. The restart time of
X-FTL was much shorter, because it did not involve copying
any data page from the database or log file.
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7. CONCLUSION
Considering the increasing popularity of SQLite in smart-

phone applications, improving the I/O efficiency of SQLite is
a practical and critical problem that need be addressed im-
mediately. This paper proposes a novel transactional FTL
called X-FTL, which can efficiently support atomic propaga-
tion of multiple pages updated by transactional applications
(e.g., SQLite databases and file systems) to a flash mem-
ory storage device. The existing solutions such as running
SQLite in rollback or write-ahead log mode and relying on
the full journaling of ext4 file system are essentially equiva-
lent in that they are based on data journaling and managing
the journal data is done by a host system.

X-FTL can relieve the host system of the burden of guar-
anteeing the transactional atomicity. X-FTL offloads the re-
sponsibility to the flash storage layer. By taking advantage
of a copy-on-write mechanism adopted by existing FTLs,
X-FTL implements all-or-nothing propagation of multiple
pages without resorting to the costly journaling schemes.
Therefore, X-FTL halves the amount of data to be written
to the storage, and doubles the transactional performance
and the life span of flash storage.

We have implemented X-FTL on an SSD development
platform called OpenSSD by enhancing its FTL code with
the X-FTL features. We have modified SQLite and ext4
file system to take advantage of X-FTL with only mini-
mal changes in their code. Using a comprehensive set of
synthetic and real workloads for SQLite databases and file
systems, we have demonstrated that X-FTL achieves a sig-
nificant improvement in transaction performance.
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