
786 IEEE Transactions on Consumer Electronics, Vol. 59, No. 4, November 2013

Contributed Paper
Manuscript received 09/29/13
Current version published 12/24/13
Electronic version published 12/24/13. 0098 3063/13/$20.00 © 2013 IEEE

Virtual Memory Partitioning for Enhancing
Application Performance in Mobile Platforms

Geunsik Lim, Student Member, IEEE, Changwoo Min, and Young Ik Eom

Abstract — Recently, the amount of running software on

smart mobile devices is gradually increasing due to the
introduction of application stores. The application store is a
type of digital distribution platform for application software,
which is provided as a component of an operating system on a
smartphone or tablet. Mobile devices have limited memory
capacity and, unlike server and desktop systems, due to their
mobility they do not have a memory slot that can expand the
memory capacity. Low memory killer (LMK) and out-of-
memory killer (OOMK) are widely used memory management
solutions in mobile systems. They forcibly terminate
applications when the available physical memory becomes
insufficient. In addition, before the forced termination, the
memory shortage incurs thrashing and fragmentation, thus
slowing down application performance. Although the existing
page reclamation mechanism is designed to secure available
memory, it could seriously degrade user responsiveness due to
the thrashing. Memory management is therefore still
important especially in mobile devices with small memory
capacity.

This paper presents a new memory partitioning technique
that resolves the deterioration of the existing application life
cycle induced by LMK and OOMK. It provides a completely
isolated virtual memory node at the operating system level.
Evaluation results demonstrate that the proposed method
improves application execution time under memory shortage,
compared with methods in previous studies1.

Index Terms — Memory Allocator, Page Reclamation, Low
Memory Killer, Out-of-Memory Killer

I. INTRODUCTION

Recent mobile devices support both built-in and
downloaded applications from application stores [1], [2]. The
application store is a type of digital distribution platform
designed to release application software. Memory
management in mobile devices is still very important because
the devices have relatively small memory capacity with no ad-
hoc expansion, and the memory management of downloaded

1 This work was supported by the IT R&D program of MKE/KEIT

[10041244, Smart TV 2.0 Software Platform]. This research was supported by
Basic Science Research Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science and Technology
(2010-0022570).

Geunsik Lim, Changwoo Min, and Young Ik Eom are with the College of
Information and Communication Engineering, Sungkyunkwan University
(SKKU), 300 Cheoncheon-dong, Jangan-gu, Suwon, Republic of Korea. (e-
mail: {leemgs, multics69, yieom}@skku.edu).

applications cannot be controlled or tested at the time of
manufacturing. Therefore, memory shortage is likely to occur
more frequently. To cope with the memory shortage, low
memory killer (LMK) [1], [3]-[5] is the most widely adopted
solution. Under memory shortage, it repeatedly terminates less
important applications in a forceful way until the operating
system (OS) secures enough free memory space to run a new
application. The list of the order of application importance is
managed by user-space daemons, such as a thread manager
and an activity manager. The activity manager acts as a traffic
controller for the overall activities (e.g. foreground and
background activities and system resources) running on the
mobile device. The goal of the activity manager is to balance
activity priorities and system resources to optimize the user's
experience. The frequent operations of LMK and out-of-
memory killer (OOMK) could seriously deteriorate user-
perceived performance in two ways. First, because all relevant
memory space of a victim application [6] is unloaded, the
unloaded memory should be reloaded at the next launching of
the victim application, and it could seriously slow down the
application performance. To select a victim application, OS
considers the following criteria: the number of threads, the
central processing unit (CPU) running time, the scheduling
priority, and whether or not it directly accesses the hardware.
Second, the core built-in applications, such as Phone, short
message service (SMS), and Contacts, can be forcibly
terminated.

When page faults induced by the memory shortage occur
frequently, the cost of page replacement dominates CPU
utilization, making applications more prone to miss the
required deadline [7], [8]. As a result, instead of actually
obtaining free memory, the thrashing [9] frequently occurs.
Consequently, a user encounters slow performance even in
built-in applications. In this paper, the proposed techniques
support new memory partitioning at the OS level, which limits
the page reclamation within the partitioned memory range
based on the well-defined hierarchy importance of
applications. The hierarchy of applications is classified into
built-in applications, applications from trusted sources, and
unknown applications from untrusted sources.

The remainder of this paper is organized as follows. Section
II describes the memory management problems of the existing
mobile platform. Section III addresses the design and
implementation of the proposed techniques. Section IV shows
the evaluation results. Related work is described in Section V.
Finally, Section VI concludes the paper.

G. Lim et al.: Virtual Memory Partitioning for Enhancing Application Performance in Mobile Platforms 787

II. MEMORY MANAGEMENT IN MOBILE PLATFORMS

In this section, the most widely used memory management
features, including page reclamation, swap in/out, process
container, LMK, and OOMK, to secure free memory under
memory pressure will be presented.

A. Conventional Memory Management

The page reclamation mechanism [10]-[12] is useful to
obtain the available memory space on the system. However, it
finds target pages that are sacrificial in memory reclamation,
based on the least recently used page (LRU) replacement
algorithm [6], [13]. It blindly handles all processes without the
platform level semantics, which are important system
applications in a mobile platform.

The swap in/out mechanism [14] is widely used to run
applications that require larger memory than the physical
memory capacity. Unfortunately, most of the mobile device
manufacturers do not use the swap in/out mechanism [15]-
[17]. Because swapping operations work with a slow storage
device with limited endurance, they fail to provide reasonably
predictable performance [18]-[20].

The process container [21]-[23], also called the resource
controller, manages hierarchically organized process groups.
It controls the resource usage of process groups by limiting
the sum of memory usage in a group. It cannot resolve
memory fragmentation or provide memory isolation because it
only logically partitions memory space by using a per-group
least recently used page list [24]. Therefore, it cannot isolate
the address access of the physical memory because the page
reclamation executes in a unified flat memory.

B. Memory Management of LMK

The existing mobile platforms manage the memory
management of the applications in a single memory space.
These applications mainly consist of built-in applications by
the manufacturer and external applications downloaded from
the application store by the user. The original role of LMK is
to automatically terminate the applications in an LRU list [1],
[3]-[5] when the available memory reaches a specified
threshold of the system. The operating system starts to kill the
oldest unneeded processes in the LRU list to retrieve the free
memory space for the execution of new applications. If the
system reaches the threshold of free physical memory, LMK
terminates the applications that are relatively less important
among the running applications.

However, the memory fragmentation gradually increases
because the operating system reclaims the memory blocks of
unimportant processes with the unit of page from a physical
memory. As the memory fragmentation becomes more severe,
the small size memory blocks increase further, resulting in
additional memory management costs such as the merging of
small blocks by a memory allocator [25], the time required to
read all the nonadjacent memory blocks at once, and the
scheduling cost between the memory blocks because there are
too many small blocks. The many small blocks increase the
memory scheduling cost to determine whether the higher

priority processes are waiting or running during the allocation
and the release of the small blocks in the preemptive operating
system. For example, in the case of systems such as a
camcorder, which requires large IO operations, releasing
many small memory blocks is time consuming [26].

In the mobile environment, user responsiveness is more
important than the fairness of the task, contrary to the server
environment. Previous studies concentrate on killing
applications in the same memory area when the available
memory is insufficient. The proposed idea focuses on how to
execute the page reclamation in an isolated memory area to
solve the performance slowdown of time-critical trusted
applications when the physical memory reaches memory
shortage. It prevents the performance slowdown of the trusted
applications from thrashing [9] that could occur by the
indiscreet memory usage of untrusted applications [27].

C. Memory Management of OOMK

OOMK [28], [29] endeavors to overcome the memory
shortage from the out-of-memory status by terminating a
lower priority process. The original role of OOMK is to kill
unimportant processes based on the memory score of
processes heuristically when the memory capacity is deficient.
However, the operation of OOMK seriously degrades the
execution speed of new applications due to the thrashing [9].
When a new application is launched under a high memory
pressure, OOMK forcibly terminates a process based on the
relative severity in order to retrieve additional memory space.
OOMK attempts to retrieve the available memory by killing
the processes of the lower memory score [12] as a victim
process to avoid an out-of-memory situation. It heuristically
determines the victim processes according to the number of
execution frequencies of the application, the execution time of
the application, the scheduling priority of the process, the
application to access devices, and the application authorized
by the root user.

Although additional physical memory space settles the
memory shortage situation, the depletion status of memory
[30] frequently occurs whenever users try to run massive
applications or memory-intensive applications. Moreover, the
miniaturization of the device, the reduction of production cost,
and the minimization of power consumption are very
important to mobile device manufacturers. Therefore, system
software technology to manage the memory consumption of
user-space applications is significant.

In summary, the existing mobile platforms provide various
kernel features for running new applications under the
memory shortage: conventional memory management
schemes, memory management of LMK, and memory
management of OOMK. However, these kernel features
frequently induce thrashing, page fault, and page replacement,
and thus result in low speed applications. It is very important
that the mobile devices are used to run the user application
instantly. Especially, core built-in applications must be
executed within the specified responsive time, even though
the available size of the physical memory is very short.

788 IEEE Transactions on Consumer Electronics, Vol. 59, No. 4, November 2013

III. VIRTUAL MEMORY NODES TO AVOID LMK/OOMK

OPERATIONS

This section describes the design and implementation of the
virtual memory partitioning framework at the operating system
level to solve the problem of the lack of available physical memory
space of the application that results in poor user responsiveness of
the time-critical core applications. This technique sets the memory
layout dynamically which is based on the permission privilege of
the root user at boot time to support the various mobile devices
from the low-end to the high-end. This technique is named the
Virtual Memory Node (VNODE) [3].

Fig. 1. Architecture of the virtual memory partitioning scheme

A. Design of VNODE

Figure 1 shows the overall architecture of a new memory
partitioning technique for the process life cycle of mobile
platform applications that have limited physical memory space.
The process life cycle of the mobile platform controls the
status of the processes for the user responsiveness of the
application. The proposed memory partitioning technique
mainly consists of three components as follows:
1) vnode_setup_memblock, which manages the mapping
between the physical memory address and a virtual node to
separate the physical memory.
2) vnode_generation, which generates the specified virtual
memory nodes from a physical memory node and determines
the size of the table for holding the address range of the
physical memory.
3) vnode_set_cpumask, which allocates the CPU masks to
support mapping between a virtual memory node(s) and
specified CPU(s) to recognize CPU-Hotplug and CPU-DVFS
enabled multicore environments [31].

VNODE has two main advantages for mobile devices with
limited memory capacity as follows:

1) Complete memory isolation: VNODE controls unnecessary
memory consumption of untrusted applications [27], [32] by
splitting a physical memory. For example, VNODE0 for
trusted applications such as a built-in package and VNODE1
for untrusted applications such as mal-ware software and
memory hog software.
2) Reduces the number of LMK/OOMK operations: VNODE
minimizes the possibility of LMK/OOMK operations
whenever memory shortage occurs.

The key idea is to allocate and release the memory area of
the application in the physically specified memory area to
control unknown applications from the untrusted sources.
These operations help to avoid the problem of reaching the
absence of available memory as soon as possible. Memory
features such as on-demand paging, page reclamation, and
page defragmentation execute memory allocation and release
of the applications [32]. This means that the core built-in
applications meet the factors of performance degradation more
often due to the unknown applications from the untrusted
sources, as follows:
1) Thrashing: harms the execution time of applications
because of the page fault and page replacement [7].
2) Memory fragmentation: increases the cost of maintaining
too many small memory blocks. It increases the scheduling
cost while allocating/releasing the scattered small memory
blocks.

The operating system can reduce the cost of the trashing
and the fragmentation of the physical memory via the
proposed idea. As a result, the virtual memory partitioning
scheme protects untrusted applications from harming the
execution time of the time-critical core applications. The
proposed system is the complete concept of the virtual
memory nodes at the operating system level for this purpose.
This feature provides a scalable infrastructure to support
mobile devices for various purposes: memory space that is
virtually separated from a physical memory, memory isolation
at the operating system level, enhanced page reclamation
based on virtual memory node, and dynamic memory-
controlling interface based on discretionary access control to
set up at boot time.

B. Implementation Details

The existing operating system adopts a flat memory model
that allocates and reclaims pages from a single unified
memory region to handle the memory resource. The operating
system cannot settle memory fragmentation and page
reclamation completely because the existing memory
subsystem allocates/releases the memory space of a process
using a global LRU list. The proposed system supports the
virtual memory nodes that are divided into two or more spaces
from a physical memory. The virtual memory node isolates
the memory usage of the process selectively by controlling the
page table for each process for the virtual memory scheme.

However, the existing system cannot determine a page
boundary region to reclaim pages because the existing
approach maintains the memory’s usage based on the amount
of memory of the processes without the virtual memory access
area. Therefore, the operating system can be equipped with a
mechanism to allocate the memory pages of the processes
such as the virtual memory nodes that appear to be a physical
memory.

The allocate_page_vma function shown in Figure 1
manages the pages of the applications in the virtual memory
space. It connects the memory pages of the process to the
allocate_page_interleave function.

G. Lim et al.: Virtual Memory Partitioning for Enhancing Application Performance in Mobile Platforms 789

The allocate_page_inteleave function executes the low-
level operation to interconnect an application and a memory
area. If the operating system needs to find the allocated
memory address currently according to the process request,
the allocate_page function calls the allocate_page_inteleave
function via the allocate_page_current function.

Finally, the __allocate_pages function allocates/releases
the memory area of the process using the processing result
of VNODE’s three components: 1) vnode_setup_memblock,
2) vnode_generation, and 3) vnode_set_cpumask. Table I
describes the meaning of the acronyms in the legend of
Figure 1.

TABLE I

THE MEANING OF THE ACRONYMS IN THE LEGEND OF FIGURE 1

LINE NAME DESCRIPTION

CPU This line is an interface for multi-core environments.
When the status of CPU is online (or offline), operating
system calculates the number of the actual CPUs and
the number of the online CPUs.

CPU&
VNODE

This line indicates a relation view linking the multi-
core CPU and virtual memory node(s) for the processes.

VNODE This line expresses the connected point and the

relationship among the kernel-level functions when the
three key components of VNODE allocate/release
memory block after recognizing the status of multi-core
CPU.

C. Memory Allocation and Page Reclamation for Built-in
Applications and External Applications

The arrows in Figure 1 show the operating structure
between CPU and memory. The root user can adjust the
generation procedure of the virtual memory nodes at boot
time. For example, it will be assumed that for the memory
layout, the trusted applications can run in VNODE0 and the
untrusted applications can run in VNODE1. In the mobile
devices, the definition of the typical two types of software is
as follows:

1) Trusted applications: which are the built-in applications and
downloaded applications from trusted sources.
2) Untrusted applications: which are downloaded applications
from untrusted sources. Untrusted applications [27], [32]
potentially include malicious code, memory hog, high power
consumption, and unnecessary CPU usage. Abnormal system
behavior and system reboot mostly results from these
applications.

Through the proposed approach, the operating system
controls the applications to avoid reaching memory shortage
while running the applications. The proposed memory
partitioning technique settles the problem of the single
memory space by running the trusted applications within
VNODE0 only. That is, the built-in applications from the
trusted sources stay in the memory until users directly exit
their applications, as shown in Figure 2.

Fig. 2. This flow diagram describes the operation of LMK/OOMK for the
trusted applications and the untrusted applications. The external
applications are the untrusted applications that run in VNODE1. ‘T’
refers to the trusted applications of the official application store, and ‘U’
refers to the untrusted applications of the unofficial application store. The
threshold of free physical memory is 72 MB.

D. Dynamic Memory-Controlling Interface

Mobile devices are used in many different ways and each
device has different system requirements such as the number
of built-in applications, the memory capacity, and the clock
speed of the CPU. VNODE consists of a dynamic memory-
controlling interface to resolve the problem of the lack of
shared memory that occurs when dividing a physical memory
into two or more virtual nodes.

Fig. 3. Cases of the dynamic virtual memory layout at boot time to
support various mobile devices. ‘Apps’ is the abbreviation of applications.
‘▩’ refers to the physically limited memory size.

VNODE includes a dynamic memory-controlling interface

via the boot parameter interface to dynamically control the
intended virtual memory layout at boot time. This function
helps VNODE to work for mobile devices with a variety of
characteristics. The dynamic setting of the memory layout at
boot time is only permitted according to the permission based
security model. Figure 3 shows four examples of smart mobile
devices that support application stores:
Case 1: VNODE dynamically generates virtual memory nodes
at boot time to isolate external applications downloaded from
the application store and the built-in applications. It protects

790 IEEE Transactions on Consumer Electronics, Vol. 59, No. 4, November 2013

the built-in applications from the LMK and OOMK operations
to assure the user responsiveness of the built-in applications.
The setting of the virtual memory layout is valid until system
reboot.

Case 2: VNODE generates three virtual memory nodes for
built-in applications, the applications from the trusted
application store, and the unknown applications from the
untrusted application store. This memory layout additionally
protects the trusted application store against Case 1.

Case 3: VNODE generates two virtual memory nodes for
responsive-aware applications and external applications for
low-end mobile devices including low memory capacity.
Low-end devices rapidly reach a memory shortage situation
against high-end devices. This memory layout policy assures
the execution time of time-critical applications with
responsiveness and real-time characteristics, which is always
important for Phone, SMS, and Contacts.

Case 4: VNODE generates three virtual memory nodes for
high-end mobile devices that have a high memory capacity. It
consists of three virtual nodes: the responsive-aware built-in
applications area provided by the manufacturer, the built-in
applications area provided by the telecommunication company,
and the large external applications area available due to the
sufficient physical memory capacity.

IV. EVALUATION

This section shows the effect of the approach on the real
mobile device including dual-core CPU, 2 GB RAM, 200 GB
HDD via SATA interface, and Linux kernel 3.0.8 (Figure 4).
Finally, the enhanced existing operating system based on a
virtual memory node improves the application performance
with the virtual memory partitioning technique.

Fig. 4. Experimental system

To evaluate the performance efficiency of the proposed

techniques, the experimental system was configured to have
two virtual nodes at boot time: VNODE0 of 0.5 GB for
trusted built-in applications and VNODE1 of 1.5 GB for
untrusted external applications. The size of each VNODE
could easily be determined by the memory requirement of
trusted built-in applications such as Phone, SMS, and Contacts.
Since the built-in applications were developed and tested by
manufacturers with a specific memory requirement, the
experimental system was established based on the memory
requirement of built-in applications to the size of VNODE0
and that of VNODE1 for the downloaded applications from
the application store. After the booting procedure is completed,
test applications are performed to increase the memory

pressure on VNODE1. The two test applications were
developed to increase the memory pressure in a real mobile
device as follows:

1) Increase utilization of page cache: A file with 2 GB is
repeatedly read in a sequential order. The page cache is filled
up and the memory pressure increases.
2) Increase utilization of anonymous page: This test
application repeatedly allocates heap memory with 1.2 GB
and fills with zero. It increases the size of anonymous pages
and the running process to be selected tends to become a
victim process according to page reclamation [7].

Typical usage of the mobile platform was performed while
running the two test applications for two days. After running
the mobile platform for two days, the system was analyzed
according to the following four aspects:

1) Available memory to evaluate an instant execution of
application without LMK/OOMK.
2) The number of execution frequency of LMK/OOMK
required to verify the assurance of the execution time of the
built-in applications.
3) Effect of memory defragmentation to reduce the cost of
memory management.
4) The execution time of applications and breakdown of the
three experimental effects.

A. Available Memory

Figure 5 compares the result of the memory consumption
between the existing system (before) and the proposed
system (after). From the experiments, the free memory is 31
MB in the existing system and 187 MB in the proposed
system. The mobile device gained the additional memory of
156 MB compared to the existing system by strictly
controlling the unnecessary memory consumption of
untrusted applications.

Fig. 5. Comparison of free memory space between the existing system
(before) and the proposed system (after). The graph on the right shows
free memory space in two parts corresponding to the two virtual nodes.

The application allocated in the VNODE1 memory node

can only be run in the physical memory of 1.5 GB. Therefore,
the operating system attempts to execute the operation of the
page reclamation only in the VNODE1 memory node when
the available memory is not sufficient. As a result, the
proposed system settled the cost of application loading time to

G. Lim et al.: Virtual Memory Partitioning for Enhancing Application Performance in Mobile Platforms 791

transfer to the memory from the storage [33] to run the
application by protecting the aggressive LMK and OOMK
operations using the novel virtual memory partitioning scheme.

B. Number of Execution Frequencies of LMK/OOMK

This section compares the experimental result of the
number of execution frequencies of LMK/OOMK between the
existing system (before) and proposed system (after). The
proposed system dramatically removed the number of
execution frequencies of naive memory reclamation [4]-[6]
running the LMK operation and OOMK operation
sequentially. The experimental result shows that untrusted
applications do not increase the number of LMK operations
by isolating the page reclamation of the untrusted applications
executed only in the VNODE1 of the 1.5 GB memory node.
Figure 6 shows the experimental result of the LMK operation:
36 times in the existing system (before) and zero times in the
proposed system (after). This means that the operating system
prevents the LMK operation from running to retrieve free
memory whenever the memory capacity is less than the
threshold of free physical memory.

Fig. 6. Number of execution frequencies of LMK/OOMK

Figure 6 also compares the number of executions of OOMK

between the existing system (before) and the proposed system
(after). If the operating system cannot obtain the available
memory with LMK, OOMK runs to avoid an out-of-memory
situation. If the operating system cannot finally also gain the
available memory with the OOMK operation, the out-of-
memory problem results in system panic and system reboot.
From the experiments, the number of OOMK operations is 2
times in the existing system (before) and zero times in the
proposed system (after).

C. Effect of Memory Defragmentation

If the execution and termination of applications occur
frequently, memory fragmentation increases. This section
shows a comparison of the improved result of the memory
fragmentation between the existing system (before) and the
proposed system (after). When applications run initially, the
operating system allocates the necessary memory space via a
memory allocator [34]. If free memory blocks are smaller than
the memory space actually needed, the operating system
cannot allocate a memory space for new applications. As a
result, the operating system must forcibly execute the activity
to terminate the running processes. This is called an external

memory fragmentation. Examples of such memory
fragmentation in mobile devices are as follows:

1) The external memory fragmentation results from a large
kernel data structure. At this time, the allocation using the
vmalloc kernel function is an exception.
2) The external memory fragmentation results from the
contiguous memory allocation for the peripheral devices.
3) The external memory fragmentation results in too many
small memory blocks. The cost of memory management to
control many small blocks, increases.

Fig. 7. Comparison result of memory fragmentation between the existing
system and the proposed system

Figure 7 shows a comparison of the experimental result of

external memory fragmentation between the existing system
(before) and the proposed system (after). The value of the x-
axis refers to the size unit of the memory block. The size of
one memory page is 4 KB in the experimental condition.
The size of the page depends on the CPU architecture. The
value of the y-axis refers to the number of free pages. If the
number of the y-axis increases, the external memory
fragment [28], [26] is poor. The number on the left side of
the x-axis indicates that memory fragmentation is heavy,
while the number on the right side of the x-axis shows that
memory fragmentation is not heavy.

The proposed system exhibited less memory
fragmentation than the existing system [26]. The number of
1 free page that refers to small-sized free page decreased
from 11,851 (before) to 946 (after). The number of 1024
free page that refer to large-sized free page increased from 2
(before) to 45 (after).

Figure 8 shows the percentage of memory fragmentation
that occurs in the trusted part (VNODE0) and the untrusted
part (VNODE1), corresponding to the two virtual nodes.
The experimental result shows that the trusted part is
isolated from the increased memory fragmentation problem
of the untrusted part due to virtual memory partitioning. In
addition, the trusted applications of VNODE0 can always
run instantly because the complete memory isolation
protects the trusted applications from the memory pressure
of the untrusted applications.

792 IEEE Transactions on Consumer Electronics, Vol. 59, No. 4, November 2013

Fig. 8. Percentage of memory fragmentation in the two virtual nodes

D. Execution Time of the Core Applications

The experimental result demonstrates the execution time of
two built-in applications to verify the effect of the real
application by the improvement of LMK/OOMK and the
minimization of memory fragmentation. The two built-in
applications are as follows:
1) Phone application: The phone application is the most
frequently used application among the built-in applications.
2) SMS application: The short message service is the second
most frequently used application on a mobile phone. SMS is a
text messaging service application of a phone.

Fig. 9. Execution time of the built-in applications (VNODE0)

Figure 9 shows the execution result of the applications: the

Phone application was improved by about 91% from 1.120
seconds (before) to 0.105 seconds (after) and the execution
time of the SMS application was improved by about 93%
from 1.750 seconds (before) to 0.112 seconds (after). The
execution time of the SMS application in the existing system
was 1.750 seconds because of the processing time needed for
the database to read the SMS data. Therefore, the execution
time of the SMS application depends on the performance of
the database.

Figure 10 shows the breakdown for the core built-in
applications. The overall degradation for each application
consists of memory fragmentation, LMK, and OOMK. The y-
axis shows the fraction of the total performance degradation
that each factor causes. Since factors that cause page

reclamation on a real device overlap in complex and
integrated ways, it is not possible to obtain a precise
separation. These results are an approximation that is intended
to direct attention to the true thrashing [9] in the system.

Fig. 10. Contribution of each factor to the performance degradation

While the proposed technique assures the instant user

responsiveness of the time-critical trusted applications by
using a novel virtual memory partitioning scheme, it has two
limitations: memory utilization and performance of untrusted
applications. The unknown applications forming the untrusted
source cannot use the free memory space of the trusted part
(VNODE0), even though the unknown applications in the
untrusted part (VNODE1) need more free memory space. In
this case, the trusted part does not need the many extra
memory space because of the statically fixed built-in
applications such as Phone, SMS, and Contacts in the trusted
part (VNODE0). Therefore, the proposed scheme does not
incur the fine tuning problem in which the initial limits in a
real environment need to be determined.

Fig. 11. Execution time of the untrusted applications (VNODE1)

The performance of applications from untrusted sources

(VNODE1) could be degraded in the proposed approach,
since the approach allocates memory within VNODE1. Figure
11 compares the performance of the downloaded applications
in two configurations: without VNODE and with VNODE. It
shows that the reduction in the performance of the untrusted
applications is less than 3%. The approach is practical and
useful because it can improve the performance of the trusted
application by over 90% with a small, 3%, performance
degradation of untrusted application.

G. Lim et al.: Virtual Memory Partitioning for Enhancing Application Performance in Mobile Platforms 793

V. RELATED WORK

The memory resource controller [21] controls the memory
quantity of tasks by limiting the memory usage of the task group
managing the processes. The task group is a set of tasks to
provide process aggregations in the operating system for
resource tracking purposes. The approach helps the operating
system that controls the memory usage of a task group with
logical memory grouping based on the task’s characteristics
(e.g. web applications, media applications, office applications,
and game applications). The user-space container can easily
aggregate many threads with the memory resource controller.
The user-space container is the user-space control package used
to provide a user-space container object that provides full
resource isolation and resource control for applications.
However, this approach cannot settle memory fragmentation
because logical memory groupings are used to intersect the area
of one physical memory. Moreover, their system cannot isolate
the operation of the page reclamation of untrusted applications
including malware [2] and memory hog [34].

The Mondriaan Memory Protection (MMP) [35] proposed by
E. Witchel improves the stability and maintainability of the
kernel by supporting memory isolation using a permission key-
based protection domain for the effective memory guard among
the multi-domains that share the linear address space. However,
this method depends on hardware because CPU needs to check
the permission for effective address management based on a
protection lookaside buffer (PLB). Therefore, MMP is not
suitable for existing mobile devices due to the cost of the entire
modification from the hardware architecture to the operating
system.

S. Nomura [1] proposed a new selection policy of process
termination by a relaunch, because the existing selection based
on the policy does not always meet users' requirements. The
proposed policy terminates processes with a short launching
time. This approach can avoid the large time consumption of
applications with long launching times. However, this technique
cannot cover the frequent operation situation of LMK when the
available memory is short. This approach focuses on fair user
responsiveness by considering the loading time of the
application. That is, it does not handle the fast execution time of
the trusted application.

P. Barham [36] proposed a hypervisor as the complete
resource virtualization. In addition, this approach supports the
functionality for resource isolation and high performance and
enhances the stability of the kernel with memory protection and
para-virtualization [37]. However, this technique focuses on the
virtualization of resources to share the high-performance system
such as a server without mobile devices. The performance of the
application in the native operating system is better than that of
the guest operating system due to the virtual machine manager.
Above all, the cost of the virtual machine manager is very high
because the virtual machine manager needs to guarantee the
performance of the applications in the guest operating systems.
In other words, this approach does not support a lightweight
memory isolation solution at the operating system level.

VI. CONCLUSION

The conventional memory management features
frequently induce thrashing, page fault, and page
replacement to secure free memory. The proposed virtual
memory node mechanism inhibits the performance
degradation of applications caused by trashing, frequent
page faults, and page replacements [7], [9]. It minimizes
page reclamation of time-critical built-in applications from
the trusted sources and limits the memory access range of
unknown applications from the untrusted sources. By using
the dynamic memory-controlling interface, different
memory layouts can be configured at the boot time
according to device types, such as mobile phones, tablets,
laptops, and camcorders. In addition, the proposed approach
supports complete virtual memory isolation based on a
discontiguous memory access model to separately run
applications from the trusted sources [2], [27] and the
untrusted sources. It drastically reduces the number of
LMK/OOMK operations by reducing the number of page
faults and page replacements [7]. Consequently, the
proposed approach overcomes the low performance of the
trusted applications induced by LMK/OOMK operations
during memory shortage.

REFERENCES
[1] S. Nomura, Y. Nakamura, T. Hattori, K. Nagata, and S. Yamaguchi,

“Managing process memory size in smartphone,” in Proc. Computer
System Symposium, Dec. 2012.

[2] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of
mobile malware in the wild,” in Proc. ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, pp. 3-14, 2011.

[3] G. Lim, C. Min, and Y. I. Eom, “Enhancing application performance by
memory partitioning in Android platforms,” in Proc. IEEE International
Conference on Consumer Electronics, Jan. 2013.

[4] R. Prodduturi, “Effective handling of low memory scenarios in
Android,” Indian Institute of Technology, Mar. 2013.

[5] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh, “Cells: A virtual
mobile smartphone architecture,” in Proc. Twenty-Third ACM
Symposium on Operating Systems Principles, pp. 173-187, 2011.

[6] J. Kook, S. Hong, W. Lee, E. Jae, and J. Kim, “Optimization of out of
memory killer for embedded Linux environments,” in Proc. ACM
Symposium on Applied Computing, pp. 633-634, 2011.

[7] S. Jiang and X. Zhang, “Adaptive page replacement to protect thrashing
in Linux,” in Proc. Annual Linux Showcase & Conference, Nov. 2001.

[8] O. Babaoglu and D. Ferrari, “Two-level replacement decisions in paging
stores,” IEEE Transactions on Computers, pp. 1151-1159, Dec. 1983.

[9] P. J. Denning, “Thrashing: Its causes and prevention,” in Proc. Fall
Joint Computer Conference, pp. 915-922, Dec. 1968.

[10] D. Seo and D. Shin, “Recently-evicted-first buffer replacement policy
for flash storage devices,” IEEE Transactions on Consumer Electronics,
vol. 54, pp. 1228-1235, Aug. 2008.

[11] E. Lee, K. Koh, and H. Bahn, “Dynamic memory allocation for real-time
and interactive jobs in mobile devices,” IET Electronics Letters, vol. 46,
no. 6, pp. 401, Mar. 2010.

[12] S. Jung, Y. Lee, and Y. H. Song, “A process-aware hot/cold
identification scheme for flash memory storage systems,” IEEE
Transactions on Consumer Electronics, vol. 56, pp. 339-347, May 2010.

[13] K. Y. Sim, F.-C. Kuo, and R. Merkel, “Fuzzing the out-of-memory killer
on embedded Linux: An adaptive random approach,” in Proc. ACM
Symposium on Applied Computing, pp. 387-392, 2011.

[14] O. Kwon and K. Koh, “Swap space management technique for portable
consumer electronics with NAND flash memory,” IEEE Transactions on
Consumer Electronics, vol. 56, pp. 1524-1531, Aug. 2010.

794 IEEE Transactions on Consumer Electronics, Vol. 59, No. 4, November 2013

[15] S. Park, H. Lim, H. Chang, and W. Sung, “Compressed swapping for
NAND flash memory based embedded systems,” in Proc. International
Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation, pp. 314-323, Jul. 2005.

[16] M. Lin, S. Chen, G. Lv, and Z. Zhou, “Optimised Linux swap system for
flash memory,” IET Electronics Letters, vol. 47, pp. 641-642, May 2011.

[17] O. Kwon, Y. Yoo, K. Koh, and H. Bahn, “Replacement and swapping
strategy to improve read performance of portable consumer devices
using compressed file systems,” IEEE Transactions on Consumer
Electronics, vol. 54, no. 2, pp. 551-559, May 2008.

[18] K. S. Yim, H. Bahn, and K. Koh, “A flash compression layer for
SmartMedia card systems,” IEEE Transactions on Consumer
Electronics, vol. 50, pp. 192-197, Feb. 2004.

[19] M. Lin and S. Chen, “Flash-aware Linux swap system for portable
consumer electronics,” IEEE Transactions on Consumer Electronics, vol.
58, pp. 419-427, May 2012.

[20] Y. Feng and E. D. Berger, “A locality-improving dynamic memory
allocator,” in Proc. Workshop on Memory System Performance, pp. 68-
77, 2005.

[21] B. Singh and V. Srinivasan, “Containers: Challenges with the memory
resource controller and its performance,” in Proc. Linux Symposium, Jun.
2007.

[22] Y. Lee, D. Jung, J. Kim, and S. Maeng, “Memory management scheme
for cost-effective disk-on-modules in consumer electronics devices,”
IEEE Transactions on Consumer Electronics, vol. 54, pp. 1776-1783,
Nov. 2008.

[23] N. Yoshiki, N. Koichi, S. Tsunemichi, I. N, N. Akira, and O. Kiyoshi,
“Run-time resource management on the dynamically self-reconfigurable
architecture PCA,” Japan Science and Technology Agency, pp. 67-72,
2001.

[24] B. Verghese, A. Gupta, and M. Rosenblum, “Performance isolation:
Sharing and isolation in shared-memory multiprocessors,” in Proc.
Architectural Support for Programming Languages and Operating
Systems, pp. 181-192, 1998.

[25] D. B. Kirk and J. K. Strosnider, “SMART (strategic memory allocation
for real-time) cache design using the MIPS R3000,” in Proc. Real-Time
Systems Symposium, pp. 322-330, 1990.

[26] G. Lim, J. Lee, and S. Suh, “Deploying preemptible Linux in the latest
camcorder,” in Proc. Linux Symposium, pp. 177-187, Jul. 2010.

[27] A. P. Felt and D. Wagner, “Phishing on mobile devices,” in Proc. Web
2.0 Security and Privacy, May 2011.

[28] E. D. Berger, B. G. Zorn, and K. S. McKinley, “Composing high-
performance memory allocators,” in Proc. Programming Language
Design and Implementation, pp. 114-124, May 2001.

[29] S. Baek, S. Ahn, J. Choi, D. Lee, and S. H. Noh, “Uniformity improving
page allocation for flash memory file systems,” in Proc. ACM & IEEE
International Conference on Embedded Software, pp. 154-163, 2007.

[30] J. M. Chang and E. F. Gehringer, “A high performance memory
allocator for object-oriented systems,” IEEE Transactions on Computers,
vol. 45, pp. 357-366, Mar. 1996.

[31] S. Carpov, J. Carlier, D. Nace, and R. Sirdey, “Task ordering and
memory management problem for degree of parallelism estimation,” in
Proc. Annual International Conference, pp. 592-603, Aug. 2011.

[32] N. Leavitt, “Mobile security: Finally a serious problem?,” IEEE
Computer, vol. 44, no. 6, pp. 11-14, Jun. 2011.

[33] Jr. H. A. Anderson, M. Reiser, and G. L. Galati, “Tuning a virtual
storage system,” IBM Systems Journal, vol. 14, pp. 246-263, 1975.

[34] H. Cam, M. Abd-El-Barr, and S. M. Sait, “A high-performance
hardware-efficient memory allocation technique and design,” in Proc.
International Conference on Computer Design, pp. 274-276, Oct. 1999.

[35] E. Witchel and K. Asanović, “Mondrix: Memory isolation for Linux
using mondriaan memory protection,” in Proc. ACM Symposium on
Operating Systems Principles, pp. 31-44, Oct. 2005.

[36] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proc. ACM Symposium on Operating Systems
Principles, pp. 164-177, Oct. 2003.

[37] G. Heiser and B. Leslie, “The OKL4 microvisor: Convergence point of
microkernels and hypervisors,” in Proc. ACM Asia-Pacific Workshop on
Workshop on Systems, pp. 19-24, Aug. 2010.

BIOGRAPHIES
Geunsik Lim (S’13) received his B.S. degree in Computer
Science and Engineering from Ajou University, in Korea
in 2003. He is currently an M.S. student in the College of
Information and Communication Engineering,
Sungkyunkwan University, and a senior software engineer
for Samsung Electronics in Korea. His current research
interests include system optimization, embedded operating

systems, mobile platforms, and multicores.

Changwoo Min received his B.S. and M.S. degrees in
Computer Science from Soongsil University, Korea in
1996 and 1998, respectively. He is currently a Ph.D.
candidate in the College of Information and
Communication Engineering, Sungkyunkwan University,
and a software engineer for Samsung Electronics in Korea.
His current research interests include virtualization,

storage systems, and mobile platforms.

Young Ik Eom received his B.S., M.S., and Ph.D. degrees
in the Department of Computer Science and Statistics of
Seoul National University, Korea in 1983, 1985, and 1991,
respectively. From 1986 to 1993, he was an Associate
Professor at Dankook University in Korea. He was also a
visiting scholar in the Department of Information and
Computer Science at the University of California, Irvine,

from Sep. 2000 to Aug. 2001. Since 1993, he has been a professor at
Sungkyunkwan University in Korea. His research interests include
virtualization, operating systems, cloud systems, and system securities.

