
786 IEEE Transactions on Consumer Electronics, Vol. 59, No. 4, November 2013 

Contributed Paper 
Manuscript received 09/29/13     
Current version published 12/24/13  
Electronic version published 12/24/13.                                     0098 3063/13/$20.00 © 2013 IEEE 

Virtual Memory Partitioning for Enhancing 
Application Performance in Mobile Platforms 

Geunsik Lim, Student Member, IEEE, Changwoo Min, and Young Ik Eom 

 
Abstract — Recently, the amount of running software on 

smart mobile devices is gradually increasing due to the 
introduction of application stores. The application store is a 
type of digital distribution platform for application software, 
which is provided as a component of an operating system on a 
smartphone or tablet. Mobile devices have limited memory 
capacity and, unlike server and desktop systems, due to their 
mobility they do not have a memory slot that can expand the 
memory capacity. Low memory killer (LMK) and out-of-
memory killer (OOMK) are widely used memory management 
solutions in mobile systems. They forcibly terminate 
applications when the available physical memory becomes 
insufficient. In addition, before the forced termination, the 
memory shortage incurs thrashing and fragmentation, thus 
slowing down application performance. Although the existing 
page reclamation mechanism is designed to secure available 
memory, it could seriously degrade user responsiveness due to 
the thrashing. Memory management is therefore still 
important especially in mobile devices with small memory 
capacity. 

This paper presents a new memory partitioning technique 
that resolves the deterioration of the existing application life 
cycle induced by LMK and OOMK. It provides a completely 
isolated virtual memory node at the operating system level. 
Evaluation results demonstrate that the proposed method 
improves application execution time under memory shortage, 
compared with methods in previous studies1. 

Index Terms — Memory Allocator, Page Reclamation, Low 
Memory Killer, Out-of-Memory Killer 

I. INTRODUCTION 

Recent mobile devices support both built-in and 
downloaded applications from application stores [1], [2]. The 
application store is a type of digital distribution platform 
designed to release application software. Memory 
management in mobile devices is still very important because 
the devices have relatively small memory capacity with no ad-
hoc expansion, and the memory management of downloaded 
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applications cannot be controlled or tested at the time of 
manufacturing. Therefore, memory shortage is likely to occur 
more frequently. To cope with the memory shortage, low 
memory killer (LMK) [1], [3]-[5] is the most widely adopted 
solution. Under memory shortage, it repeatedly terminates less 
important applications in a forceful way until the operating 
system (OS) secures enough free memory space to run a new 
application. The list of the order of application importance is 
managed by user-space daemons, such as a thread manager 
and an activity manager. The activity manager acts as a traffic 
controller for the overall activities (e.g. foreground and 
background activities and system resources) running on the 
mobile device. The goal of the activity manager is to balance 
activity priorities and system resources to optimize the user's 
experience. The frequent operations of LMK and out-of-
memory killer (OOMK) could seriously deteriorate user-
perceived performance in two ways. First, because all relevant 
memory space of a victim application [6] is unloaded, the 
unloaded memory should be reloaded at the next launching of 
the victim application, and it could seriously slow down the 
application performance. To select a victim application, OS 
considers the following criteria: the number of threads, the 
central processing unit (CPU) running time, the scheduling 
priority, and whether or not it directly accesses the hardware. 
Second, the core built-in applications, such as Phone, short 
message service (SMS), and Contacts, can be forcibly 
terminated. 

When page faults induced by the memory shortage occur 
frequently, the cost of page replacement dominates CPU 
utilization, making applications more prone to miss the 
required deadline [7], [8]. As a result, instead of actually 
obtaining free memory, the thrashing [9] frequently occurs. 
Consequently, a user encounters slow performance even in 
built-in applications. In this paper, the proposed techniques 
support new memory partitioning at the OS level, which limits 
the page reclamation within the partitioned memory range 
based on the well-defined hierarchy importance of 
applications. The hierarchy of applications is classified into 
built-in applications, applications from trusted sources, and 
unknown applications from untrusted sources. 

The remainder of this paper is organized as follows. Section 
II describes the memory management problems of the existing 
mobile platform. Section III addresses the design and 
implementation of the proposed techniques. Section IV shows 
the evaluation results. Related work is described in Section V. 
Finally, Section VI concludes the paper. 
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II. MEMORY MANAGEMENT IN MOBILE PLATFORMS 

In this section, the most widely used memory management 
features, including page reclamation, swap in/out, process 
container, LMK, and OOMK, to secure free memory under 
memory pressure will be presented. 

A. Conventional Memory Management 

The page reclamation mechanism [10]-[12] is useful to 
obtain the available memory space on the system. However, it 
finds target pages that are sacrificial in memory reclamation, 
based on the least recently used page (LRU) replacement 
algorithm [6], [13]. It blindly handles all processes without the 
platform level semantics, which are important system 
applications in a mobile platform. 

The swap in/out mechanism [14] is widely used to run 
applications that require larger memory than the physical 
memory capacity. Unfortunately, most of the mobile device 
manufacturers do not use the swap in/out mechanism [15]-
[17]. Because swapping operations work with a slow storage 
device with limited endurance, they fail to provide reasonably 
predictable performance [18]-[20]. 

The process container [21]-[23], also called the resource 
controller, manages hierarchically organized process groups. 
It controls the resource usage of process groups by limiting 
the sum of memory usage in a group. It cannot resolve 
memory fragmentation or provide memory isolation because it 
only logically partitions memory space by using a per-group 
least recently used page list [24]. Therefore, it cannot isolate 
the address access of the physical memory because the page 
reclamation executes in a unified flat memory. 

B. Memory Management of LMK 

The existing mobile platforms manage the memory 
management of the applications in a single memory space. 
These applications mainly consist of built-in applications by 
the manufacturer and external applications downloaded from 
the application store by the user. The original role of LMK is 
to automatically terminate the applications in an LRU list [1], 
[3]-[5] when the available memory reaches a specified 
threshold of the system. The operating system starts to kill the 
oldest unneeded processes in the LRU list to retrieve the free 
memory space for the execution of new applications. If the 
system reaches the threshold of free physical memory, LMK 
terminates the applications that are relatively less important 
among the running applications.  

However, the memory fragmentation gradually increases 
because the operating system reclaims the memory blocks of 
unimportant processes with the unit of page from a physical 
memory. As the memory fragmentation becomes more severe, 
the small size memory blocks increase further, resulting in 
additional memory management costs such as the merging of 
small blocks by a memory allocator [25], the time required to 
read all the nonadjacent memory blocks at once, and the 
scheduling cost between the memory blocks because there are 
too many small blocks. The many small blocks increase the 
memory scheduling cost to determine whether the higher 

priority processes are waiting or running during the allocation 
and the release of the small blocks in the preemptive operating 
system. For example, in the case of systems such as a 
camcorder, which requires large IO operations, releasing 
many small memory blocks is time consuming [26]. 

In the mobile environment, user responsiveness is more 
important than the fairness of the task, contrary to the server 
environment. Previous studies concentrate on killing 
applications in the same memory area when the available 
memory is insufficient. The proposed idea focuses on how to 
execute the page reclamation in an isolated memory area to 
solve the performance slowdown of time-critical trusted 
applications when the physical memory reaches memory 
shortage. It prevents the performance slowdown of the trusted 
applications from thrashing [9] that could occur by the 
indiscreet memory usage of untrusted applications [27]. 

C. Memory Management of OOMK 

OOMK [28], [29] endeavors to overcome the memory 
shortage from the out-of-memory status by terminating a 
lower priority process. The original role of OOMK is to kill 
unimportant processes based on the memory score of 
processes heuristically when the memory capacity is deficient. 
However, the operation of OOMK seriously degrades the 
execution speed of new applications due to the thrashing [9]. 
When a new application is launched under a high memory 
pressure, OOMK forcibly terminates a process based on the 
relative severity in order to retrieve additional memory space. 
OOMK attempts to retrieve the available memory by killing 
the processes of the lower memory score [12] as a victim 
process to avoid an out-of-memory situation. It heuristically 
determines the victim processes according to the number of 
execution frequencies of the application, the execution time of 
the application, the scheduling priority of the process, the 
application to access devices, and the application authorized 
by the root user. 

Although additional physical memory space settles the 
memory shortage situation, the depletion status of memory 
[30] frequently occurs whenever users try to run massive 
applications or memory-intensive applications. Moreover, the 
miniaturization of the device, the reduction of production cost, 
and the minimization of power consumption are very 
important to mobile device manufacturers. Therefore, system 
software technology to manage the memory consumption of 
user-space applications is significant. 

In summary, the existing mobile platforms provide various 
kernel features for running new applications under the 
memory shortage: conventional memory management 
schemes, memory management of LMK, and memory 
management of OOMK. However, these kernel features 
frequently induce thrashing, page fault, and page replacement, 
and thus result in low speed applications. It is very important 
that the mobile devices are used to run the user application 
instantly. Especially, core built-in applications must be 
executed within the specified responsive time, even though 
the available size of the physical memory is very short. 
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III. VIRTUAL MEMORY NODES TO AVOID LMK/OOMK 

OPERATIONS 

This section describes the design and implementation of the 
virtual memory partitioning framework at the operating system 
level to solve the problem of the lack of available physical memory 
space of the application that results in poor user responsiveness of 
the time-critical core applications. This technique sets the memory 
layout dynamically which is based on the permission privilege of 
the root user at boot time to support the various mobile devices 
from the low-end to the high-end. This technique is named the 
Virtual Memory Node (VNODE) [3]. 

 

 
Fig. 1. Architecture of the virtual memory partitioning scheme 

 

A. Design of VNODE 

Figure 1 shows the overall architecture of a new memory 
partitioning technique for the process life cycle of mobile 
platform applications that have limited physical memory space. 
The process life cycle of the mobile platform controls the 
status of the processes for the user responsiveness of the 
application. The proposed memory partitioning technique 
mainly consists of three components as follows: 
1) vnode_setup_memblock, which manages the mapping 
between the physical memory address and a virtual node to 
separate the physical memory. 
2) vnode_generation, which generates the specified virtual 
memory nodes from a physical memory node and determines 
the size of the table for holding the address range of the 
physical memory. 
3) vnode_set_cpumask, which allocates the CPU masks to 
support mapping between a virtual memory node(s) and 
specified CPU(s) to recognize CPU-Hotplug and CPU-DVFS 
enabled multicore environments [31]. 

VNODE has two main advantages for mobile devices with 
limited memory capacity as follows: 

1)  Complete memory isolation: VNODE controls unnecessary 
memory consumption of untrusted applications [27], [32] by 
splitting a physical memory. For example, VNODE0 for 
trusted applications such as a built-in package and VNODE1 
for untrusted applications such as mal-ware software and 
memory hog software. 
2) Reduces the number of LMK/OOMK operations: VNODE 
minimizes the possibility of LMK/OOMK operations 
whenever memory shortage occurs. 

The key idea is to allocate and release the memory area of 
the application in the physically specified memory area to 
control unknown applications from the untrusted sources. 
These operations help to avoid the problem of reaching the 
absence of available memory as soon as possible. Memory 
features such as on-demand paging, page reclamation, and 
page defragmentation execute memory allocation and release 
of the applications [32]. This means that the core built-in 
applications meet the factors of performance degradation more 
often due to the unknown applications from the untrusted 
sources, as follows: 
1) Thrashing: harms the execution time of applications 
because of the page fault and page replacement [7]. 
2) Memory fragmentation: increases the cost of maintaining 
too many small memory blocks. It increases the scheduling 
cost while allocating/releasing the scattered small memory 
blocks. 

The operating system can reduce the cost of the trashing 
and the fragmentation of the physical memory via the 
proposed idea. As a result, the virtual memory partitioning 
scheme protects untrusted applications from harming the 
execution time of the time-critical core applications. The 
proposed system is the complete concept of the virtual 
memory nodes at the operating system level for this purpose. 
This feature provides a scalable infrastructure to support 
mobile devices for various purposes: memory space that is 
virtually separated from a physical memory, memory isolation 
at the operating system level, enhanced page reclamation 
based on virtual memory node, and dynamic memory-
controlling interface based on discretionary access control to 
set up at boot time. 

B. Implementation Details 

The existing operating system adopts a flat memory model 
that allocates and reclaims pages from a single unified 
memory region to handle the memory resource. The operating 
system cannot settle memory fragmentation and page 
reclamation completely because the existing memory 
subsystem allocates/releases the memory space of a process 
using a global LRU list. The proposed system supports the 
virtual memory nodes that are divided into two or more spaces 
from a physical memory. The virtual memory node isolates 
the memory usage of the process selectively by controlling the 
page table for each process for the virtual memory scheme. 

However, the existing system cannot determine a page 
boundary region to reclaim pages because the existing 
approach maintains the memory’s usage based on the amount 
of memory of the processes without the virtual memory access 
area. Therefore, the operating system can be equipped with a 
mechanism to allocate the memory pages of the processes 
such as the virtual memory nodes that appear to be a physical 
memory. 

The allocate_page_vma function shown in Figure 1 
manages the pages of the applications in the virtual memory 
space. It connects the memory pages of the process to the 
allocate_page_interleave function. 
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The allocate_page_inteleave function executes the low-
level operation to interconnect an application and a memory 
area. If the operating system needs to find the allocated 
memory address currently according to the process request, 
the allocate_page function calls the allocate_page_inteleave 
function via the allocate_page_current function. 

Finally, the __allocate_pages function allocates/releases 
the memory area of the process using the processing result 
of VNODE’s three components: 1) vnode_setup_memblock, 
2) vnode_generation, and 3) vnode_set_cpumask. Table I 
describes the meaning of the acronyms in the legend of 
Figure 1.  

 
TABLE I 

THE MEANING OF THE ACRONYMS IN THE LEGEND OF FIGURE 1 

LINE NAME DESCRIPTION 

CPU This line is an interface for multi-core environments. 
When the status of CPU is online (or offline), operating 
system calculates the number of the actual CPUs and 
the number of the online CPUs. 

 
CPU& 
VNODE 

This line indicates a relation view linking the multi-
core CPU and virtual memory node(s) for the processes. 

 
VNODE This line expresses the connected point and the 

relationship among the kernel-level functions when the 
three key components of VNODE allocate/release 
memory block after recognizing the status of multi-core 
CPU. 

 

C. Memory Allocation and Page Reclamation for Built-in 
Applications and External Applications  

The arrows in Figure 1 show the operating structure 
between CPU and memory. The root user can adjust the 
generation procedure of the virtual memory nodes at boot 
time. For example, it will be assumed that for the memory 
layout, the trusted applications can run in VNODE0 and the 
untrusted applications can run in VNODE1. In the mobile 
devices, the definition of the typical two types of software is 
as follows: 

1) Trusted applications: which are the built-in applications and 
downloaded applications from trusted sources. 
2) Untrusted applications: which are downloaded applications 
from untrusted sources. Untrusted applications [27], [32] 
potentially include malicious code, memory hog, high power 
consumption, and unnecessary CPU usage. Abnormal system 
behavior and system reboot mostly results from these 
applications. 

Through the proposed approach, the operating system 
controls the applications to avoid reaching memory shortage 
while running the applications. The proposed memory 
partitioning technique settles the problem of the single 
memory space by running the trusted applications within 
VNODE0 only. That is, the built-in applications from the 
trusted sources stay in the memory until users directly exit 
their applications, as shown in Figure 2. 

 
Fig. 2. This flow diagram describes the operation of LMK/OOMK for the 
trusted applications and the untrusted applications. The external 
applications are the untrusted applications that run in VNODE1. ‘T’ 
refers to the trusted applications of the official application store, and ‘U’ 
refers to the untrusted applications of the unofficial application store. The 
threshold of free physical memory is 72 MB. 

 

D. Dynamic Memory-Controlling Interface  

Mobile devices are used in many different ways and each 
device has different system requirements such as the number 
of built-in applications, the memory capacity, and the clock 
speed of the CPU. VNODE consists of a dynamic memory-
controlling interface to resolve the problem of the lack of 
shared memory that occurs when dividing a physical memory 
into two or more virtual nodes. 
 

 
Fig. 3. Cases of the dynamic virtual memory layout at boot time to 
support various mobile devices. ‘Apps’ is the abbreviation of applications. 
‘▩’ refers to the physically limited memory size. 

 
VNODE includes a dynamic memory-controlling interface 

via the boot parameter interface to dynamically control the 
intended virtual memory layout at boot time. This function 
helps VNODE to work for mobile devices with a variety of 
characteristics. The dynamic setting of the memory layout at 
boot time is only permitted according to the permission based 
security model. Figure 3 shows four examples of smart mobile 
devices that support application stores: 
Case 1: VNODE dynamically generates virtual memory nodes 
at boot time to isolate external applications downloaded from 
the application store and the built-in applications. It protects 
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the built-in applications from the LMK and OOMK operations 
to assure the user responsiveness of the built-in applications. 
The setting of the virtual memory layout is valid until system 
reboot. 

Case 2: VNODE generates three virtual memory nodes for 
built-in applications, the applications from the trusted 
application store, and the unknown applications from the 
untrusted application store. This memory layout additionally 
protects the trusted application store against Case 1. 

Case 3: VNODE generates two virtual memory nodes for 
responsive-aware applications and external applications for 
low-end mobile devices including low memory capacity. 
Low-end devices rapidly reach a memory shortage situation 
against high-end devices. This memory layout policy assures 
the execution time of time-critical applications with 
responsiveness and real-time characteristics, which is always 
important for Phone, SMS, and Contacts. 

Case 4: VNODE generates three virtual memory nodes for 
high-end mobile devices that have a high memory capacity. It 
consists of three virtual nodes: the responsive-aware built-in 
applications area provided by the manufacturer, the built-in 
applications area provided by the telecommunication company, 
and the large external applications area available due to the 
sufficient physical memory capacity. 

IV. EVALUATION 

This section shows the effect of the approach on the real 
mobile device including dual-core CPU, 2 GB RAM, 200 GB 
HDD via SATA interface, and Linux kernel 3.0.8 (Figure 4). 
Finally, the enhanced existing operating system based on a 
virtual memory node improves the application performance 
with the virtual memory partitioning technique. 

 

 
Fig. 4. Experimental system 

 
To evaluate the performance efficiency of the proposed 

techniques, the experimental system was configured to have 
two virtual nodes at boot time: VNODE0 of 0.5 GB for 
trusted built-in applications and VNODE1 of 1.5 GB for 
untrusted external applications. The size of each VNODE 
could easily be determined by the memory requirement of 
trusted built-in applications such as Phone, SMS, and Contacts. 
Since the built-in applications were developed and tested by 
manufacturers with a specific memory requirement, the 
experimental system was established based on the memory 
requirement of built-in applications to the size of VNODE0 
and that of VNODE1 for the downloaded applications from 
the application store. After the booting procedure is completed, 
test applications are performed to increase the memory 

pressure on VNODE1. The two test applications were 
developed to increase the memory pressure in a real mobile 
device as follows:  

1) Increase utilization of page cache: A file with 2 GB is 
repeatedly read in a sequential order. The page cache is filled 
up and the memory pressure increases.  
2) Increase utilization of anonymous page: This test 
application repeatedly allocates heap memory with 1.2 GB 
and fills with zero. It increases the size of anonymous pages 
and the running process to be selected tends to become a 
victim process according to page reclamation [7]. 

Typical usage of the mobile platform was performed while 
running the two test applications for two days. After running 
the mobile platform for two days, the system was analyzed 
according to the following four aspects: 

1) Available memory to evaluate an instant execution of 
application without LMK/OOMK. 
2) The number of execution frequency of LMK/OOMK 
required to verify the assurance of the execution time of the 
built-in applications. 
3) Effect of memory defragmentation to reduce the cost of 
memory management.  
4) The execution time of applications and breakdown of the 
three experimental effects. 

A. Available Memory  

Figure 5 compares the result of the memory consumption 
between the existing system (before) and the proposed 
system (after). From the experiments, the free memory is 31 
MB in the existing system and 187 MB in the proposed 
system. The mobile device gained the additional memory of 
156 MB compared to the existing system by strictly 
controlling the unnecessary memory consumption of 
untrusted applications. 

 

 
Fig. 5. Comparison of free memory space between the existing system 
(before) and the proposed system (after). The graph on the right shows 
free memory space in two parts corresponding to the two virtual nodes. 

 
The application allocated in the VNODE1 memory node 

can only be run in the physical memory of 1.5 GB. Therefore, 
the operating system attempts to execute the operation of the 
page reclamation only in the VNODE1 memory node when 
the available memory is not sufficient. As a result, the 
proposed system settled the cost of application loading time to 
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transfer to the memory from the storage [33] to run the 
application by protecting the aggressive LMK and OOMK 
operations using the novel virtual memory partitioning scheme. 

B. Number of Execution Frequencies of LMK/OOMK 

This section compares the experimental result of the 
number of execution frequencies of LMK/OOMK between the 
existing system (before) and proposed system (after). The 
proposed system dramatically removed the number of 
execution frequencies of naive memory reclamation [4]-[6] 
running the LMK operation and OOMK operation 
sequentially. The experimental result shows that untrusted 
applications do not increase the number of LMK operations 
by isolating the page reclamation of the untrusted applications 
executed only in the VNODE1 of the 1.5 GB memory node. 
Figure 6 shows the experimental result of the LMK operation: 
36 times in the existing system (before) and zero times in the 
proposed system (after). This means that the operating system 
prevents the LMK operation from running to retrieve free 
memory whenever the memory capacity is less than the 
threshold of free physical memory. 
 

 
Fig. 6. Number of execution frequencies of LMK/OOMK 

 
Figure 6 also compares the number of executions of OOMK 

between the existing system (before) and the proposed system 
(after). If the operating system cannot obtain the available 
memory with LMK, OOMK runs to avoid an out-of-memory 
situation. If the operating system cannot finally also gain the 
available memory with the OOMK operation, the out-of-
memory problem results in system panic and system reboot. 
From the experiments, the number of OOMK operations is 2 
times in the existing system (before) and zero times in the 
proposed system (after). 

C. Effect of Memory Defragmentation 

If the execution and termination of applications occur 
frequently, memory fragmentation increases. This section 
shows a comparison of the improved result of the memory 
fragmentation between the existing system (before) and the 
proposed system (after). When applications run initially, the 
operating system allocates the necessary memory space via a 
memory allocator [34]. If free memory blocks are smaller than 
the memory space actually needed, the operating system 
cannot allocate a memory space for new applications. As a 
result, the operating system must forcibly execute the activity 
to terminate the running processes. This is called an external 

memory fragmentation. Examples of such memory 
fragmentation in mobile devices are as follows: 

1) The external memory fragmentation results from a large 
kernel data structure. At this time, the allocation using the 
vmalloc kernel function is an exception. 
2) The external memory fragmentation results from the 
contiguous memory allocation for the peripheral devices. 
3) The external memory fragmentation results in too many 
small memory blocks. The cost of memory management to 
control many small blocks, increases. 

 

 
Fig. 7. Comparison result of memory fragmentation between the existing 
system and the proposed system 

 
Figure 7 shows a comparison of the experimental result of 

external memory fragmentation between the existing system 
(before) and the proposed system (after). The value of the x-
axis refers to the size unit of the memory block. The size of 
one memory page is 4 KB in the experimental condition. 
The size of the page depends on the CPU architecture. The 
value of the y-axis refers to the number of free pages. If the 
number of the y-axis increases, the external memory 
fragment [28], [26] is poor. The number on the left side of 
the x-axis indicates that memory fragmentation is heavy, 
while the number on the right side of the x-axis shows that 
memory fragmentation is not heavy. 

The proposed system exhibited less memory 
fragmentation than the existing system [26]. The number of 
1 free page that refers to small-sized free page decreased 
from 11,851 (before) to 946 (after). The number of 1024 
free page that refer to large-sized free page increased from 2 
(before) to 45 (after). 

Figure 8 shows the percentage of memory fragmentation 
that occurs in the trusted part (VNODE0) and the untrusted 
part (VNODE1), corresponding to the two virtual nodes. 
The experimental result shows that the trusted part is 
isolated from the increased memory fragmentation problem 
of the untrusted part due to virtual memory partitioning. In 
addition, the trusted applications of VNODE0 can always 
run instantly because the complete memory isolation 
protects the trusted applications from the memory pressure 
of the untrusted applications.  
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Fig. 8. Percentage of memory fragmentation in the two virtual nodes 

  

D. Execution Time of the Core Applications 

The experimental result demonstrates the execution time of 
two built-in applications to verify the effect of the real 
application by the improvement of LMK/OOMK and the 
minimization of memory fragmentation. The two built-in 
applications are as follows: 
1) Phone application: The phone application is the most 
frequently used application among the built-in applications. 
2) SMS application: The short message service is the second 
most frequently used application on a mobile phone. SMS is a 
text messaging service application of a phone. 

 

 
Fig. 9. Execution time of the built-in applications (VNODE0) 

 
Figure 9 shows the execution result of the applications: the 

Phone application was improved by about 91% from 1.120 
seconds (before) to 0.105 seconds (after) and the execution 
time of the SMS application was improved by about 93% 
from 1.750 seconds (before) to 0.112 seconds (after). The 
execution time of the SMS application in the existing system 
was 1.750 seconds because of the processing time needed for 
the database to read the SMS data. Therefore, the execution 
time of the SMS application depends on the performance of 
the database. 

Figure 10 shows the breakdown for the core built-in 
applications. The overall degradation for each application 
consists of memory fragmentation, LMK, and OOMK. The y-
axis shows the fraction of the total performance degradation 
that each factor causes. Since factors that cause page 

reclamation on a real device overlap in complex and 
integrated ways, it is not possible to obtain a precise 
separation. These results are an approximation that is intended 
to direct attention to the true thrashing [9] in the system. 

 

 
Fig. 10. Contribution of each factor to the performance degradation 

 
While the proposed technique assures the instant user 

responsiveness of the time-critical trusted applications by 
using a novel virtual memory partitioning scheme, it has two 
limitations: memory utilization and performance of untrusted 
applications. The unknown applications forming the untrusted 
source cannot use the free memory space of the trusted part 
(VNODE0), even though the unknown applications in the 
untrusted part (VNODE1) need more free memory space. In 
this case, the trusted part does not need the many extra 
memory space because of the statically fixed built-in 
applications such as Phone, SMS, and Contacts in the trusted 
part (VNODE0). Therefore, the proposed scheme does not 
incur the fine tuning problem in which the initial limits in a 
real environment need to be determined. 

 

 
Fig. 11. Execution time of the untrusted applications (VNODE1) 

 
The performance of applications from untrusted sources 

(VNODE1) could be degraded in the proposed approach, 
since the approach allocates memory within VNODE1. Figure 
11 compares the performance of the downloaded applications 
in two configurations: without VNODE and with VNODE. It 
shows that the reduction in the performance of the untrusted 
applications is less than 3%. The approach is practical and 
useful because it can improve the performance of the trusted 
application by over 90% with a small, 3%, performance 
degradation of untrusted application. 
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V. RELATED WORK 

The memory resource controller [21] controls the memory 
quantity of tasks by limiting the memory usage of the task group 
managing the processes. The task group is a set of tasks to 
provide process aggregations in the operating system for 
resource tracking purposes. The approach helps the operating 
system that controls the memory usage of a task group with 
logical memory grouping based on the task’s characteristics 
(e.g. web applications, media applications, office applications, 
and game applications). The user-space container can easily 
aggregate many threads with the memory resource controller. 
The user-space container is the user-space control package used 
to provide a user-space container object that provides full 
resource isolation and resource control for applications. 
However, this approach cannot settle memory fragmentation 
because logical memory groupings are used to intersect the area 
of one physical memory. Moreover, their system cannot isolate 
the operation of the page reclamation of untrusted applications 
including malware [2] and memory hog [34]. 

The Mondriaan Memory Protection (MMP) [35] proposed by 
E. Witchel improves the stability and maintainability of the 
kernel by supporting memory isolation using a permission key-
based protection domain for the effective memory guard among 
the multi-domains that share the linear address space. However, 
this method depends on hardware because CPU needs to check 
the permission for effective address management based on a 
protection lookaside buffer (PLB). Therefore, MMP is not 
suitable for existing mobile devices due to the cost of the entire 
modification from the hardware architecture to the operating 
system. 

S. Nomura [1] proposed a new selection policy of process 
termination by a relaunch, because the existing selection based 
on the policy does not always meet users' requirements. The 
proposed policy terminates processes with a short launching 
time. This approach can avoid the large time consumption of 
applications with long launching times. However, this technique 
cannot cover the frequent operation situation of LMK when the 
available memory is short. This approach focuses on fair user 
responsiveness by considering the loading time of the 
application. That is, it does not handle the fast execution time of 
the trusted application. 

P. Barham [36] proposed a hypervisor as the complete 
resource virtualization. In addition, this approach supports the 
functionality for resource isolation and high performance and 
enhances the stability of the kernel with memory protection and 
para-virtualization [37]. However, this technique focuses on the 
virtualization of resources to share the high-performance system 
such as a server without mobile devices. The performance of the 
application in the native operating system is better than that of 
the guest operating system due to the virtual machine manager. 
Above all, the cost of the virtual machine manager is very high 
because the virtual machine manager needs to guarantee the 
performance of the applications in the guest operating systems. 
In other words, this approach does not support a lightweight 
memory isolation solution at the operating system level. 

VI. CONCLUSION 

The conventional memory management features 
frequently induce thrashing, page fault, and page 
replacement to secure free memory. The proposed virtual 
memory node mechanism inhibits the performance 
degradation of applications caused by trashing, frequent 
page faults, and page replacements [7], [9]. It minimizes 
page reclamation of time-critical built-in applications from 
the trusted sources and limits the memory access range of 
unknown applications from the untrusted sources. By using 
the dynamic memory-controlling interface, different 
memory layouts can be configured at the boot time 
according to device types, such as mobile phones, tablets, 
laptops, and camcorders. In addition, the proposed approach 
supports complete virtual memory isolation based on a 
discontiguous memory access model to separately run 
applications from the trusted sources [2], [27] and the 
untrusted sources. It drastically reduces the number of 
LMK/OOMK operations by reducing the number of page 
faults and page replacements [7]. Consequently, the 
proposed approach overcomes the low performance of the 
trusted applications induced by LMK/OOMK operations 
during memory shortage. 
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