
J Grid Computing (2012) 10:69–84
DOI 10.1007/s10723-012-9209-4

VMMB: Virtual Machine Memory Balancing
for Unmodified Operating Systems

Changwoo Min · Inhyeok Kim · Taehyoung Kim ·
Young Ik Eom

Received: 16 August 2011 / Accepted: 1 March 2012 / Published online: 28 March 2012
© Springer Science+Business Media B.V. 2012

Abstract Virtualization technology has been
widely adopted in Internet hosting centers and
cloud-based computing services, since it reduces
the total cost of ownership by sharing hardware
resources among virtual machines (VMs). In a
virtualized system, a virtual machine monitor
(VMM) is responsible for allocating physical
resources such as CPU and memory to individual
VMs. Whereas CPU and I/O devices can be
shared among VMs in a time sharing manner,
main memory is not amendable to such multiplex-
ing. Moreover, it is often the primary bottleneck
in achieving higher degrees of consolidation. In
this paper, we present VMMB (Virtual Machine

C. Min · I. Kim · T. Kim · Y. I. Eom (B)
School of Information & Communication Engineering,
Sungkyunkwan University, 300 Cheoncheon-Dong,
Jangan-Gu, Suwon, Gyeonggi-Do 440-746, Korea
e-mail: yieom@ece.skku.ac.kr

C. Min
e-mail: multics69@ece.skku.ac.kr

I. Kim
e-mail: kkojiband@ece.skku.ac.kr

T. Kim
e-mail: kim15m@ece.skku.ac.kr

C. Min
Samsung Electronics, 416, Maetan-3Dong,
Yeongtong-Gu, Suwon, Gyeonggi-Do, 443-742, Korea

Memory Balancer), a novel mechanism to
dynamically monitor the memory demand and
periodically re-balance the memory among the
VMs. VMMB accurately measures the memory
demand with low overhead and effectively allo-
cates memory based on the memory demand and
the QoS requirement of each VM. It is applicable
even to guest OS whose source code is not avail-
able, since VMMB does not require modifying
guest kernel. We implemented our mechanism on
Linux and experimented on synthetic and realistic
workloads. Our experiments show that VMMB
can improve performance of VMs that suffers
from insufficient memory allocation by up to 3.6
times with low performance overhead (below
1%) for monitoring memory demand.

Keywords Virtualization · Memory balancing ·
LRU histogram · Double paging

1 Introduction

Virtualization technologies are becoming ubiqui-
tous in various domains, such as data centers, web
hosting and even in desktop computing. More-
over, in recent years, there are many efforts to
utilize virtualization technologies in scientific
computing [1–3]. The key benefit of virtualization
is to improve the hardware resource utilization
by running multiple VMs on a single physical

70 C. Min et al.

hardware. VMM controls all hardware resources
while offering each VM an illusion of having ded-
icated raw machines by virtualizing the hardware.
Though CPU and I/O devices can be efficiently
shared by multiplexing, it is still challenging to
share memory efficiently in accordance with mem-
ory needs [4–6]. Increasing a machine’s physical
memory is often difficult and expensive, because
it is subject to the availability of extra memory
slot and the support of higher-capacity memory
module on the mother board. Moreover, main
memory consumes up to 40% of server energy
that is comparable to or slightly higher than the
energy consumption of processors [7].

To efficiently share memory in a virtualized
data center, there are two approaches in comple-
mentary relation. First, dynamic memory balanc-
ing approaches estimate the memory demand of
each VM and then dynamically allocate the mem-
ory according to the demands [5, 8–11]. Second,
VM migration approaches find overloaded VMs
and relocate them to the idle physical machines
[12–18]. During the migration, a VM is completely
stopped and migration traffic negatively impacts
to a data center. Since it is a relatively heavy-
weight solution, the number of total migration
in a data center should be minimal. Therefore,
the VM migration techniques are better suited
to sustained overload. On the contrary, dynamic
memory balancing techniques are better suited to
transient workload, since it is more lightweight
than the migration techniques. Williams et al. [19]
analyze log data from the production data cen-
ter to investigate characteristics of the memory
overload. They show that the memory overload is
largely transient, lasting for less than 2 min, and
the average number of overloaded servers in a
data center is quite small, 1.76% in their research.
It implies that VMs sharing a physical machine are
unlikely to experience correlated memory over-
load at the same time.

Considering the characteristics of the mem-
ory overload in a data center, dynamic memory
balancing techniques have potential to alleviate
the majority of the memory overload. However,
they still have limitations. Statistical sampling [8]
cannot estimate memory demand larger than the
currently allocated memory size. Geiger [10] can-
not estimate memory demand smaller than the

current allocation, since it relies on buffer cache
eviction. Moreover, because it relies on page
fault and page table update information to trace
buffer eviction, it is not compatible with hardware
MMU virtualization support that eliminates traps
to VMM when manipulating guest page table.
Hypervisor exclusive cache [11] can deduce grow-
ing and shrinking of memory demand. However,
it cannot be used for OS without source code
because it requires modifying guest OS to monitor
buffer cache eviction and promotion. Zhao et al.
[5] proposed an LRU histogram [20] based ap-
proach for memory demand estimation. However
it suffers from performance overhead for large
working set, because the cost to calculate to up-
date LRU histogram is linearly increasing to the
working set size.

In this paper, we introduce VMMB (Virtual
Machine Memory Balancer), a novel mechanism
to dynamically re-balance the memory allocation
among the VMs. VMM monitors the memory
usage of each VM to estimate the memory de-
mand, and then it periodically re-balances the
memory based on the estimated memory demand.
The distinguishing features of VMMB compared
to prior work are as follows: First, VMMB can es-
timate the memory demand above and below the
allocated size by using the LRU histogram with-
out modifying the guest kernel. This is achieved
by using the nested page faults for monitoring
the memory access and a pseudo swap device for
monitoring the guest swapping. We also present
techniques to efficiently construct the LRU his-
togram. Second, we propose a LRU histogram
guided memory allocation algorithm that has QoS
support. Basically, the proposed algorithm deter-
mines the memory allocation size of each VM
along with globally minimizing the page miss ra-
tio. If a VM has a different QoS requirement, it
reflects the QoS requirement on the memory allo-
cation decision. Finally, we use a combination of
ballooning [8] and VMM-level swapping in order
to efficiently select the victim pages and to imme-
diately allocate memory to a beneficiary VM. For
an efficient VMM-level swapping, we introduce a
technique to avoid double paging anomaly [21, 22]
that can seriously degrade the performance when
the same page is selected as a victim by the VMM
and VM.

VMMB: Virtual Machine Memory Balancing for Unmodified Operating Systems 71

The remainder of this paper is organized as
follows: Section 2 describes the detailed design
and implementation of the system. In Section 3,
we show the experimental results of VMMB.
Section 4 presents the related work for the pro-
posed scheme. Finally, in Section 5, we summarize
our conclusions and suggest future directions.

2 Design of the System

In this section, we describe the design of the pro-
posed system. We begin by providing the overall
system architecture and continue by describing
three design issues: (a) the efficient construction
of the LRU histogram without modifying guest
kernel, (b) re-balancing the memory dynamically
based on the memory demand of each VM, and
(c) efficient VMM-level swapping.

2.1 System Overview

As we illustrate in Fig. 1, VMMB consists of three
parts. First, the VMM intercepts the memory ac-
cess and the swapping operations from the VM
and builds up an LRU histogram. We maintain a
per-VM page list wherein the pages are ordered
from the most to the least recently accessed. The
LRU histograms are updated by calculating the
stack distance [20] of the accessed page in the
page list.

Second, the VMM periodically decides the
memory allocation size for each VM to minimize
the system-wide page miss ratio that is induced
from the LRU histograms. If a VM has a different
QoS requirement, it is also incorporated in the
allocation size calculation. The new memory allo-
cation sizes are enforced via the ballooning tech-
nique. When a VM reclaims memory, it reports
the reclaimed pages back to the VMM so the
VMM can allocate those pages to other VMs.

Finally, the VMM employs VMM-level swap-
ping as a secondary memory reclamation mech-
anism from the VMs. The VMM preferentially
uses ballooning to reclaim memory. However if
the memory is not sufficiently reclaimed on time,
the system falls back to a swapping mechanism.
The VMM swaps out pages to the swap device of
a victim VM. The swap device maintains which
pages are swapped out by the VMM to avoid
double paging.

2.2 Building the LRU Histogram

To construct the LRU histogram, we monitor the
memory accesses and swapping operations from
the VM. Monitoring the memory accesses is re-
quired to estimate a memory demand below the
current allocation. We turn off the presence bits
of the nested page table [23] to trap the mem-
ory access without modifying the guest kernel.
Monitoring the swapping operations is needed
to estimate memory demands above the current

Fig. 1 System
architecture VM

VMM
update

histogram
VMM-level

paging
memory

re-balancing

change
memory
allocation

nested
page
fault

report
reclaimed
pages

 ...

LRU Histogram
 ...

physical memory swap device balloon driver

guest swapping
VMM-level
swapping

72 C. Min et al.

allocation. We propose a virtualization aware
swap device (VSWAP) to monitor the guest swap-
ping operations. VSWAP is composed of a front-
end driver and a back-end driver. The front-end
driver runs in the guest kernel and communicates
with the corresponding back-end driver. Since in
terms of the guest kernel, the front-end driver is
the equivalent of a typical block device driver,
it does not require modifying the guest kernel.
The back-end driver performs the actual I/O op-
erations and notifies the VMM of which guest
physical pages are swapped in/out. The details of
VSWAP will be discussed in Section 2.4.

Since the number of pages in the page list grows
as a VM increases memory usage, the overhead
of updating LRU histogram needs to be minimal.
To minimize performance overhead, we design
the page list structure as illustrated in Fig. 2. The
VMM maintains the page list for each VM using
three different groups: hot list, warm list and cold
list. The hot list contains the most recently ac-
cessed pages. To reduce the monitoring overhead,
the pages in the hot list are not monitored by
turning on the presence bits. Our system dynami-
cally changes the capacity of the hot list to keep a
balance between the monitoring overhead and the
accuracy of LRU histogram. The cold list holds
the pages evicted by the VM or the VMM. Each
list has a limited capacity for holding pages. A new
page is added to the head of the hot list and the
accessed page is moved to the head of hot list. If
the addition of the page causes the hot list to go
beyond its capacity, the tail of the hot list is moved
to the head of the warm list. If the VM exceeds
the available memory size of the VMM, the VMM
evicts the tail of the warm list to the VSWAP, and
then moves it to the head of the cold list. Similarly,

when the VM evicts a page, it is moved to the head
of the cold list. The size of the hot list and the
warm list is controlled by an adaptive mechanism
described in Section 2.3.2.

To update the LRU histogram, we must first
find where the trapped page is in the page list.
If it is in the page list, the stack distance is cal-
culated, and the corresponding entry of the LRU
histogram is incremented by one. After that, the
page is moved to the head of the page list in order
to maintain the order from the most to the least
recently accessed. The most expensive operation
in updating the LRU histogram is to calculate the
stack distance of a page in the page list structure.
A naive linear search from the head of the list
takes the worst-case linear time. It is inefficient
and not scalable. To calculate the stack distance
efficiently, we propose a weighted red-black tree.
A weighted red-black tree is an extension of red-
black tree [24] whose node is annotated by weight.
Weight represents the total number of nodes in its
subtree. The distance can be efficiently calculated
in the worst-case logarithmic time, as described in
Algorithm 1. To correctly maintain the weights,
we extend four red-black tree operations that

Fig. 2 The page list
structure of a VM

hot list
(not monitored, allocated)

cold list
(monitored, evicted)

warm list
(monitored, allocated)

nested page fault
major fault

adjustment eviction

page descriptor page list weighted red-black tree page movement

VMMB: Virtual Machine Memory Balancing for Unmodified Operating Systems 73

change the tree height: insert, delete, left-rotate,
and right-rotate. When a new node is inserted, its
initial weight is assigned as 1 and the weights of
its ancestors are increased by 1. Similarly, when
a node is deleted, the weights of its ancestors are
decremented by 1. For the left-rotate and right-
rotate operations, we update the weights of the
rotated nodes. Because our system does not mon-
itor hot pages, the weighted red-black trees are
attached to the only warm and cold lists.

2.3 Dynamic Memory Balancing

Based on the per-VM LRU histograms, the VMM
periodically re-balances the memory allocation
among the VMs. This process is composed of
three steps: (a) calculating the suitable memory
allocation size considering the overall system per-
formance and the QoS requirement of each VM,
(b) changing the capacity of the hot list of each
VM in order to manage the monitoring overhead
and the accuracy of the LRU histogram, and
(c) imposing a new memory allocation size for
each VM and reclaiming memory if required. In
our experiments, we re-balance every 6 s.

2.3.1 QoS Aware Memory Allocation

When multiple VMs are competing for memory
resources, it is generally desirable minimizing the
system-wide page miss ratio by re-balancing the
memory. However there are often conflicts with
QoS requirements of the VMs that have different
importance factors. For example, the importance
can be defined by the penalty of failure, the re-
quired performance, or the service level agree-
ment (SLA). Therefore, the memory allocation
scheme in the virtual machine environment should
consider both the global system performance and
the QoS requirements of individual VMs.

To determine memory allocation for each VM,
we propose a QoS aware lookahead algorithm
derived from the lookahead algorithm of Qureshi
et al. [25]. It minimizes the system-wide page
miss ratio while considering the QoS require-
ments from the individual VMs. To control these
conflicting goals, we provide two explicit parame-
ters, Mi and wi, that enables administrator to

describe the QoS requirements. Mi is the mini-
mum memory size of VMi that should be allo-
cated at any time. wi is the relative importance
of VMi. We describe the details of the QoS
aware lookahead algorithm in Algorithm 2. We
first allocates Mi for VMi in order to guaran-
tee the minimum memory allocation. The re-
maining memory R is divided according to the
effectiveness of additional memory allocation and
QoS requirement of each VM. Assuming all re-
maining memory is allocated to a VM, the maxi-
mum delta is defined by the amount of decreasing
page miss ratio per unit of additional memory
allocation (get_max_delta). It represents the
effectiveness of additional memory allocation for
a VM. To consider the effectiveness and the im-
portance of a VM together, we define �i, which
is calculated by multiplying the maximum delta
and wi. The VM with the greatest �i gets the
additional memory whose size is the minimum
for achieving �i. This process is repeated until all
memory is assigned.

The worst case of this process is when all of the
Mis are zero and so only one unit is assigned at
every iteration. It takes U + (U − 1) + (U − 2) +
. . . + 1 = U(U−1)

2 ≈ U2

2 where U is the number of
units to allocate. In our experiments, we set the
unit size to 1 MB.

74 C. Min et al.

2.3.2 Adaptive Changes to the Hot List Capacity

A workload that heavily accesses the memory
causes a large overhead due to too frequent his-
togram updates. To balance the monitoring over-
head and the accuracy of the LRU histogram, we
dynamically change the capacity of hot list, i.e.
the number of non-monitored pages. The capacity
of the hot list Hi is determined for monitoring
only acceptable number of nested page faults for
a balancing interval. Let Et

i be the expected hot
list capacity for an VMi at the t-th interval. We
estimate the expected capacity Et

i, using the LRU
histogram and the number of faults monitored in
the previous interval. Et

i is defined as follows:

Et
i = min

(
max
e∈E

(e), Ai

)
(1)

E =
⎧⎨
⎩e

∣∣∣∣
T∑

j=e

L j · Ft−1

Mt−1
≥ F

⎫⎬
⎭ (2)

where F is the target number of faults for an
interval, Ft−1 is the actual number of faults mon-
itored during the previous interval, and Mt−1 is
the sum of the histogram entries for the warm
and cold lists from the previous interval. Since it
does not make sense for Hi to be larger than the
memory allocation size Ai, Et

i should be bounded
by Ai. We finally determine Hi based on the
predicted Et

i. If the estimation from the histogram
gives a new value (i.e. Et

i �= Et−1
i), we select Et

i as
Hi. Otherwise, we adaptively change the capacity
based on the gap between Ft−1 and F as follows:

Ht
i = Ht−1

i ·
(

1 + γ · Ft−1 − F
F

)
(3)

where γ is a positive coefficient smaller than 1.
Because our approach estimates the capacity of
the hot list directly from the LRU histogram,
it becomes possible to quickly adapt. Therefore,
our method performs with a small overhead even
when memory demand changes rapidly. In our
experiments, F is set to 16,384 pages (256 MB
given the page size of 4 KB and page group size
of 4) and γ is set to 5%.

2.3.3 Reclaiming the VM Memory

After the memory size Ai for a VM is decided, the
VMM asks the VMs to set their memory usage
to Ai. When a VM needs to reduce its memory
usage, a balloon driver on the guest OS allocates
the pinned memory. If the memory is available,
the guest OS will allocate the memory from its
free list. Otherwise, the guest OS will reclaim the
least valuable memory. The balloon driver reports
the allocated pages back to the VMM. The VMM
deletes the reported pages in the page list in order
to assign them to the other VM. When the VMM
allows a VM to use more memory, the balloon
driver frees the pinned memory for the guest OS
to allocate when required.

2.4 VMM-level Swapping

In the ballooning technique, a victim VM should
be scheduled to release its memory. Thus, there
is a scheduling delay until the victim VM actually
releases the memory. If a beneficiary VM asks
additional memory before memory reclamation,
a VMM swaps out a memory from the victim
VM and immediately allocates the memory to the
beneficiary VM. The VMM-level swapping can
allocate memory without such scheduling delay.
However, it is inefficient because it can result in a
double paging anomaly when the VMM-level and
the guest page replacement policies are aligned.

VSWAP that we presented in Section 2.2 has
two purposes: monitoring the guest swapping
without modifying the guest kernel, and perform-
ing VMM-level swapping without double paging.
We illustrate the architecture of VSWAP back-
end driver in Fig. 3. It has two external inter-
faces that connect to the guest OS and the VMM.
Because it deals with both guest swapping and
VMM-level swapping, it maintains the guest phys-
ical page frame number (GFN) to the physical
sector number (PSN) mapping and the guest sec-
tor number (GSN) to PSN mapping information.
GSN is the logical sector number of the VSWAP
front-end device in the guest OS, and PSN is the
physical sector number of the VSWAP back-end
device in the VMM.

The VMM accesses the VSWAP back-end
driver through GF N. When the VMM evicts a

VMMB: Virtual Machine Memory Balancing for Unmodified Operating Systems 75

sector allocation bitmap

GSN → PSN mapping

guest swapping
<GFN, GSN>

GFN →PSN mapping

VMM-level swapping
<GFN>

Fig. 3 Architecture of the VSWAP back-end driver

page, it asks to write a particular GF N. VSWAP
first allocates new sectors, the PSN, for a page
and then writes the contents of the GF N to
the allocated sectors. After that, < GF N, PSN >

mapping is added to the mapping table. When the
VMM swaps in a page, it asks to read a particular
GF N. The VMM first finds the PSN correspond-
ing to the GF N and reads the PSN into the GF N.

The VSWAP front-end driver in a guest OS
accesses the VSWAP back-end driver through
< GF N, GSN >. In case of a guest swap-out, the
guest OS asks to write the particular GF N to
the GSN. VSWAP first searches the GFN-to-PSN
mapping table to check if the GF N has already
been evicted by the VMM. If it has, VSWAP just
adds the < GSN, PSN > mapping to the map-
ping table and skips the actual write operations.
Since our system omits the I/O operations for
already evicted pages, it guarantees freedom from
double paging. Otherwise, VSWAP allocates new
sectors to the PSN, and writes the contents of
the GF N to the PSN. After that, it adds the
< GSN, PSN > mapping to the mapping table.
When the guest OS swaps in a page, it asks to
read the GSN to the GF N. VMM translates
the GSN to the PSN using the mapping table
and reads the PSN to the GF N. The GSN-to-
PSN and the GFN-to-PSN mapping tables are
implemented by using a hash table. When double
paging occurs, the same page is written twice and
read once. Since our system avoids double paging,

the page is always written only once. Therefore,
the performance is significantly improved under
heavy memory pressure. The probability of dou-
ble paging is determined by how much the guest
page replacement is synchronized with the VMM-
level page replacement. If the two replacement
policies are highly aligned, double paging occurs
more likely. We will show how much they are
synchronized in Section 3.3.

Typically, OS manages meta-data as well as
swapped-out pages in a swap device. For the meta-
data write, we do not need to maintain GSN-to-
PSN mapping information. Linux uses the first
sector to store the meta-data [26]. Therefore, our
VSWAP back-end driver for Linux does not main-
tain the GSN-to-PSN mapping information for the
first sector.

3 Evaluation

In this section, we show the evaluation results of
our system. The purposes of our experiments are
as follows: validating how well the LRU histogram
reflects the memory demand (Section 3.2), eval-
uating its overhead (Section 3.4), analyzing the
double paging (Section 3.3), and demonstrating its
effectiveness in balancing the multi-VM memory
allocation (Section 3.5).

3.1 Environmental Setup

Our system is implemented using the KVM [27] vir-
tual machine monitor for Intel processor. It uses
a modified version of QEMU [28] for device emu-
lation and Intel EPT [23] for MMU virtualization.
In our prototype implementation, we used Linux
kernel 2.6.33 and QEMU-KVM-0.12.3. All of the
experiments described in this paper are performed
on a PC using a 2.67 GHz Intel Core i5 quad-
core processor with 4 GB of physical memory. The
guest OS is Ubuntu 10.04 with Linux kernel 2.6.35.

To evaluate the various aspects of our system,
we run two synthetic benchmarks and three re-
alistic workloads. We implemented two synthetic
benchmarks: mono and random designed by Zhao
et al. [5]. In a given memory range [low, high],
mono sequentially scans though pages for a fixed
number of iterations. During the first half of an

76 C. Min et al.

interval, it monotonically increases the number of
scanned pages from low to high. For the second
half of the interval, it decreases from high to low.
random is similar to mono except that it scans
a random number of pages for a fixed number
of iterations. On the other hand, random scans
a random number of pages for a fixed number
of iterations. For three realistic workloads, we
run one CPU intensive workload and two mem-
ory intensive workloads. SPEC CPU 2000 [29] is
a CPU-intensive benchmark suite. SPECjbb2005
[30] evaluates the JVM performance by emulating
a three-tier client/server system. JVM tends to
allocate more memory to java heap in order to re-
duce garbage collection overhead. By default, the
initial java heap size is 256 MB, and the maximum
is 512 MB. A web server workload is also memory
intensive, since OS tries to keep the accessed web
pages in the page cache to reduce disk IO. We
installed Apache [31] web server in each VM with
approximately 512 MB web pages. To generate
the workload, we used http_load [32] to make
requests for randomly selected files for the web
server.

We set T, the total memory size designated
for the VMM, to 1,024 MB. Mi, the minimum
memory size for each VM, is configured as 128
MB. Therefore, the amount of memory reserved
for dynamic balancing is (1,024 − 128 · N) MB,
where N is the number of VMs. By default, we set

wi, relative importance of each VM as 1. VSWAP
size is configured as 512 MB for each VM.

3.2 Miss Ratio Estimation

To validate how well the LRU histogram reflects
the memory demand of a VM, we first run mono
and random under two different conditions. First,
we run the benchmarks at a range of [64, 768] MB.
No swapping occurs. We plot the memory size of
5% page miss while the benchmark is running.
As Fig. 4 shows, our system closely follows the
memory usage change. Second, we run the bench-
marks at a range of [64, 1280] MB to show the
behavior under guest swapping. In Fig. 5, the bars
on the bottom represent the amount of guest level
swapping in MB. The amount of guest swapping
is about 1.1 GB for each. Since the guest swap-
ping operations are incorporated with the LRU
histogram, it is possible to estimate the page miss
ratio using the LRU histogram.

Figures 4 and 5 also illustrate how the capacity
of the hot list changes in MB. The proposed adap-
tive process for the hot list capacity can closely
track the change of working set size. When the
working set size of a benchmark increases, new
pages are accessed and they are added to the head
of the hot list. It makes the number of moni-
tored faults from warm and cold lists temporarily
decrease. Thus, the adaptive process shrinks the

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200

m
em

or
y

si
ze

 (
M

B
)

time (sec)

actual working set size
estimated 5% miss ratio

hot list capacity

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

m
em

or
y

si
ze

 (
M

B
)

time (sec)

actual working set size
estimated 5% miss ratio

hot list capacity

(a) mono (b) random

Fig. 4 Miss ratio estimation without guest swapping

VMMB: Virtual Machine Memory Balancing for Unmodified Operating Systems 77

0

 200

 400

 600

 800

 1000

 1200

 1400

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

1400

m
em

or
y

si
ze

 (
M

B
)

gu
es

t s
w

ap
pi

ng
 (

M
B

)

time (sec)

actual working set size
estimated 5% miss ratio

hot list capacity

0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

1400

1600

1800

m
em

or
y

si
ze

 (
M

B
)

gu
es

t s
w

ap
pi

ng
 (

M
B

)

time (sec)

actual working set size
estimated 5% miss ratio

hot list capacity

(a) mono (b) random

Fig. 5 Miss ratio estimation with guest swapping

capacity of the hot list to monitor more page
faults. When the benchmark repeatedly accesses
the changed working set, our system monitors
sufficient page faults due to the small capacity.
Then, our system increases the capacity of the
hot list to control monitoring overhead. Similarly,
when the benchmark shrink the working set, the
estimation using (1) is not accurate and overesti-
mates the capacity, since the LRU histogram does
not reflect newly changed working set. Thus, our
system decreases the capacity of the hot list by
using (3). When the number of monitored faults
becomes too many, the capacity is increased again.
When the LRU histogram reflects the memory
access pattern of the current working set through
this process, the capacity of the hot list maintains

in stable. In our experiment, the capacity of the
hot list is decreased to 32 MB at minimum. Such
adaptive process makes our system closely track
the memory usage while keeping the overhead
low.

3.3 Analysis on Double Paging

As we described in Section 2.4, double paging
occurs more likely when the victim selection in
the guest and the VMM are highly synchronized.
Since our system uses the LRU replacement
policy for VMM-level swapping, double paging
occurs more likely when a page evicted by guest
OS is located at the end of the VMM page list.
In Fig. 6, we analyze distribution of victim selec-

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

distance from the end of VMM-level page list (MB)

0%

20%

40%

60%

80%

100%

8006004002000 1000

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

distance from the end of VMM-level page list (MB)

(a) mono (b) random

Fig. 6 Cumulative distribution of victim selection in Linux

78 C. Min et al.

tion in Linux guest for mono and random. The
X-axis denotes the distance of a guest evicted page
from the end of the VMM-level page list. The
Y-axis is a cumulative percentage of the guest
eviction by distance. We can see that the distribu-
tion is highly skewed. In case of mono, 40% of the
guest victim selection is located in the last 5.4%
(55.7 MB) of the VMM-level page list. Similarly,
in random, the last 2.9% (29.6 MB) of the VMM-
level page list covers 40% of the guest victim
selection. This implies that the victim selection of
Linux guest is highly synchronized with the VMM-
level victim selection. Therefore, a small amount
of VMM-level swapping can cause double paging,
and VSWAP can significantly improve perfor-
mance by avoiding double paging and reducing
the disk I/O.

3.4 Performance Overhead

For our system to be practical, its performance
overhead should be minimal. To measure the
performance overhead, we run benchmarks on
one VM. Figure 7 shows the monitoring overhead
and how effective the proposed optimization tech-
niques are. Performance with VMMB is tested
using three different configurations. Without any
optimization, the monitoring overhead is fairly
large. Using the weighted red-black tree helps
significantly, especially for workloads with large

working set size; the normalized performance im-
proves from 24.57 to 50.47% for SPEC2000, from
7.91 to 32.01% for SPECjbb2005, and from 28.2
to 70.79% for http_load. Adaptive resizing of
the hot list further reduces the overhead. The nor-
malized performances are very close to the non-
monitored ones; the performances are 99.33% for
SPEC2000, 99.56% for SPECjbb2005, and 99.53%
for http_load.

The monitoring overhead is mainly composed
of the LRU histogram updates and the other
overheads including mode switching. Except for
the LRU histogram update, the mode switching
between the VM and the VMM is dominant,
since this includes saving/loading status and TLB
flushing. In Fig. 8, we classify the two overhead
sources for each benchmarks. It shows that the
histogram updating causes about 40% of the total
overhead, regardless of the workload.

For SPEC2000 workloads, the performance
overhead of the Zhao et al. [5] method is also
small, 3% on average. However, the overhead of
memory intensive workload with large working
set such as mcf is not negligible, by up to 24%. On
the contrary, for the same workloads, the average
overhead of our system is even smaller, 0.67%,
and more importantly, the largest overhead does
not exceed 1.65%. It shows that our optimization
techniques effectively control the overhead for the
various workloads.

Fig. 7 Monitoring
overhead

0%

20%

40%

60%

80%

100%

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

Without VMMB

VMMB without optimization

VMMB with weighted red-black tree

VMMB with weighted red-black tree + adaptive resizing

VMMB: Virtual Machine Memory Balancing for Unmodified Operating Systems 79

Fig. 8 Overhead
breakdown

0%

20%

40%

60%

80%

100%

ov
er

he
ad

 (
%

)

histogram update other overhead

3.5 Effectiveness of Memory Balancing

In this section, we examine that our system allo-
cates how much memory to each VM responding
to changes in the memory demand and how this
impacts performance.

3.5.1 CPU Intensive + Memory Intensive
Workloads

We start our evaluation with a simple scenario
where the memory resource contention is rare.
Two VMs run a CPU intensive workload and
memory intensive workloads in a different order.

For the CPU intensive but low memory demand
workload, we run 186.crafty for 20 itera-
tions. For the memory intensive workload, we
run http_load and SPECjbb2005 for 5 min re-
spectively. VM1 runs the CPU intensive work-
load followed by the memory intensive workloads.
VM2 runs the memory intensive workloads first,
followed by the CPU intensive workload.

As Fig. 9a shows, our system initially gives
more memory to VM2 that initially runs the mem-
ory intensive workloads and then gradually moves
memory to VM1 over time. Figure 9b shows the
performance comparison of the dynamic memory
balancing. Best case is the performance when we

0

 200

 400

 600

 800

 1000

186.crafty
http_load

SPECjbb2005

0

0.5

1

1.5

2

2.5

3http_load

SPECjbb2005

186.crafty

m
em

or
y

si
ze

 (
M

B
)

av
oi

de
d

V
M

M
−l

ev
el

 e
vi

ct
io

n
(M

B
)

VM1: allocated memory
VM2: allocated memory

0%

20%

40%

60%

80%

100%

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

Best case Baseline Balanced

(a) memory allocation size (b) performance

Fig. 9 CPU intensive + memory intensive workloads

80 C. Min et al.

run two VMs with 1,024 MB. This represents the
theoretical maximum performance for compari-
son. Baseline is the performance using static parti-
tioning that allocates 512 MB for each VM. Our
system allocates less memory to 186.crafty,
however, its performance degradation is negli-
gible; 1.0% overhead for VM1 and 1.4% over-
head for VM2. On the contrary, the additional
memory from the dynamic memory balancing is
beneficial for the memory intensive workloads.
For http_load, its performance improved from
27.0 to 97.9%. Similarly, the performance of
SPECjbb2005 also improved from 75.8 to 96.0%.
In this case, we can achieve a performance im-
provement for memory intensive workloads that
matches closely to the best case performance with
negligible performance overhead in CPU inten-
sive workloads.

3.5.2 Memory Intensive + Memory Intensive
Workloads

A more challenging case is found when running
two memory intensive workloads simultaneously.
VM1 first runs http_load for 5 min and then
runs SPECjbb2005 for 5 min. VM2 runs them in
reverse order. The QoS aware lookahead algo-
rithm assesses the LRU histogram information

and determines the memory allocation size that
minimizes the global page miss ratio.

As shown in Fig. 10a, it gives more memory to
http_load whose performance is more sensitive
to the memory allocation size. Figure 10b
shows the performance of the dynamic memory
balancing. Baseline is the performance with static
partitioning that allocates 512 MB for each VM.
By virtue of the LRU histogram guided memory
allocation minimizing the page miss ratio globally,
the performance of http_load is improved by
15.3% for VM1 and 33.9% for VM2 whereas the
performance degradation of SPECjbb2005
is in control; 3.8% for VM1 and 1.6%
for VM2.

3.5.3 Mixed Workloads using Multiple VMs

To simulate a more realistic environment where
multiple VMs are running various applications,
we run three VMs simultaneously using different
applications. VM1 runs http_load for 10 min,
and VM2 runs http_load for 5 min and then
runs 186.crafty for 8 iterations. VM3 first
runs 186.crafty for 8 iterations and then runs
SPECjbb2005. Baseline is the performance with
static partitioning that allocates 341 MB for
each VM.

0

200

400

600

800

1000

http_load
SPECjbb2005

0

0.5

1

1.5

2

2.5

3
SPECjbb2005

http_load

m
em

or
y

si
ze

 (
M

B
)

av
oi

de
d

V
M

M
−l

ev
el

 e
vi

ct
io

n
(M

B
)

VM1: allocated memory
VM2: allocated memory

0%

20%

40%

60%

80%

100%

120%

140%

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

Baseline Balanced

(a) memory allocation size (b) performance

Fig. 10 Memory intensive + memory intensive workloads

VMMB: Virtual Machine Memory Balancing for Unmodified Operating Systems 81

0

200

400

600

800

1000

 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

m
em

or
y

si
ze

 (
M

B
)

av
oi

de
d

V
M

M
−l

ev
el

 e
vi

ct
io

n
(M

B
)

VM1: allocated memory
VM2: allocated memory
VM3: allocated memory

0

200

400

600

800

1000

 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3
m

em
or

y
si

ze
 (

M
B

)

av
oi

de
d

V
M

M
−l

ev
el

 e
vi

ct
io

n
(M

B
)

VM1: allocated memory
VM2: allocated memory
VM3: allocated memory

(a) without QoS (b) with QoS

Fig. 11 Memory allocation of the mixed workloads

Figure 11a shows the memory allocation of
the three VMs when we set the weights of all
three VMs 1. In this case, the memory allocation
size is determined by considering only the global
page miss ratio. Our system allocates the least
memory to 186.crafty that is the least mem-
ory demanding workload and gives more mem-
ory to http_load and SPECjbb2005. Compared
to the baseline, it improves the performance of
http_load and SPECjbb2005 to 66.7 and 89.6%
respectively, whereas the performance overhead
for the rest is maintained between 1.5 and 4.2% as
seen in Fig. 12.

To verify how effectively our proposed QoS
aware lookahead algorithm works, we set the
weight of VM2 to 10 while maintaining the

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%
200%

n
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

Baseline Balanced Balanced with QoS

Fig. 12 Performance of the mixed workloads

others at 1. This improves the performance of
VM2 from 98.4 to 148.3% for http_load and
from 96.3 to 98.5% for 186.crafty. Although
we set the weight of VM2 ten times greater than
the others, the performances of http_load in
VM1 and SPECjbb2005 in VM2 are still better
than the baseline performance; 108.3 and 163.4%
respectively.

4 Related Work

Our system achieves high server utilization by dy-
namically balancing memory among VM. In this
section, we describe some related work on mem-
ory balancing and VM migration in a virtualized
environment to achieve high resource utilization
in a data center.

4.1 Dynamic Memory Balancing

In an effort to dynamically allocate memory in
a virtual machine environment, previous studies
have sought to estimate the memory demand for
each VM and then allocate the memory.

Waldspurger [8] presents several mechanisms
used in VMWare ESX server to dynamically
balance the memory needed by VMs. First, he
presents a statistical sampling method used to
estimate the memory demand without any VM
involvement. At each sampling period, a small

82 C. Min et al.

number of randomly selected pages are monitored
to see whether they are accessed or not. The frac-
tion of the accessed pages over the selected pages
is considered to be the memory demand of a VM.
However this method cannot estimate working set
size larger than the current memory allocation. If
a VM begins to trash, it simply reports its working
set size as 100% of the allocated memory. In
this case, the VMM can give some added mem-
ory in order to keep its measured working set
size below 100%. However this is possible only
if there is available physical memory. Second, he
proposed a ballooning technique used to reclaim
memory from a VM as a result of dynamic mem-
ory balancing. To reclaim memory, the balloon
driver in a guest OS allocates some guest physi-
cal pages as victims and then reports them back
to the VMM for future re-assignment to other
VMs. The victim selection of ballooning technique
is effective, because the determination of which
pages are least valuable is known only by the
guest OS. However there are several limitations.
First, the memory reclamation can happen only
after the victim VM is scheduled. Such scheduler-
induced delays can deteriorate the effectiveness of
memory balancing [33]. Second, it is not possible
to reclaim memory when the balloon driver fails
to allocate pinned memory under heavy memory
pressure.

To cope with such drawbacks of ballooning
technique, some studies [6, 8] use VMM-level
swapping. In VMM-level swapping, the VMM
performs page replacement on the guest physical
memory. However there could be a pathological
performance degradation known as the double
paging anomaly [21, 22]. When the guest tries to
swap out a page that is already swapped out by
the VMM, the page needed to be swapped in
by the VMM. Collaborative memory management
(CMM) [9] addresses this problem by using a page
hinting technique. In CMM, the VM shares its
page usage information with the VMM, that is,
what pages are being used and what pages may
be evicted with little penalty. Milos et al. [34] also
address the issue in page sharing context. Their
system manages a repayment FIFO, a list of pages
for a guest to give up without prior notification.
However, page hinting and repayment FIFO are

not applicable to a commodity OS, since they
require modification of the guest kernel.

Ghost buffer technique [10, 11, 35, 36] can be
used to predict the page miss ratio of a VM larger
than its current allocation. Jones et al. [10] pro-
posed techniques used to monitor the buffer cache
in a virtual machine environment. They monitor
the buffer cache eviction and promotion by inter-
cepting all I/O operations at the VMM level. The
memory demand is estimated from an LRU his-
togram of the buffer cache. However, it is impos-
sible to predict a miss ratio smaller than its current
allocation, since the memory accesses that hit the
VM memory do not incur a buffer cache eviction.
Furthermore, this method is not compatible with
the hardware MMU virtualization support that
eliminates traps to the VMM when manipulating
guest page tables, because it relies on the page
fault and the page table update information to
trace the buffer cache eviction. To predict a miss
ratio below the current memory allocation, Lu and
Shen [11] presented a hypervisor exclusive cache
scheme. In their approach, the VMM manages a
part of the VM memory and uses it as VMM-
level exclusive cache. Memory balancing among
the VMs is achieved by allocating a different size
VMM-level cache for each VM. They estimate
memory demand from an LRU histogram that
is constructed from the hypervisor cache access
information. By extending the memory managed
by the VMM, it can determine the growth and
the shrinkage needed by the working set size.
However, the coverage of the prediction and the
amount of balancing are limited by the size of
the VMM-level cache. In addition, it requires
modification of guest kernel in order to monitor
the buffer cache eviction.

Finally, Zhao et al. [5] proposed the LRU
histogram based approach for dynamic mem-
ory balancing. However it suffers from perfor-
mance overhead for workloads with large working
set size, since the cost incurred to calculate an
LRU histogram linearly increases according to the
number of pages. In addition, since the mem-
ory demand information larger than the current
allocation is not incorporated into the LRU his-
togram, the memory allocation of their methods is
suboptimal.

VMMB: Virtual Machine Memory Balancing for Unmodified Operating Systems 83

4.2 Virtual Machine Migration

VM migration has become very popular in a
data center for free of residual dependency and
dynamic load balancing [37]. Since stop-and-
copy migration technique [38] imposes significant
downtime for VMs, the recent live migration tech-
niques aim to minimize VM downtime. Pre-copy
based live migration techniques are the most pop-
ular: implementations include Xen [12], KVM [27]
and VMWare’s vMotion [13]. In order to reduce
the downtime further, post-copy based live migra-
tion technique [14] has been proposed.

There are many migration based approaches
to decide when what VMs are migrated to where
according to various placement objectives. Sand-
piper [16] automates VM migration in a data
center by detecting the sustained hot-spots and
migrating to the idle machines. Entropy [15] uses
constraint programming to find mappings of VMs
to physical machines in order to minimize the
number of migrations. Stage and Setzer [17] pro-
pose a network topology aware migration schedul-
ing to avoid network and CPU overhead of migra-
tion. Andreolini et al. [18] propose an algorithm to
identify the sustained hot-spot, by considering the
load profile of hosts and the load trend behavior
of the guest. VM migration based approaches aim
to alleviate hot-spot and increase the utilization of
resource in a data center wide. However they are
focused on long term sustained hot-spot, because
migration overhead is not negligible.

5 Conclusion and Future Work

We present VMMB, a novel mechanism used
to dynamically balance the memory used among
VMs based on the memory demand and the QoS
requirements of each VM. Since our system is de-
signed not to modify guest kernel in any manner, it
is more widely applicable than other methods. In
exchange for a small monitoring overhead (below
1%), VMMB can dramatically improve perfor-
mance of workload that suffers from memory.
Because VMMB decides the memory allocation
size to globally minimize the page miss ratio and
provide QoS support for individual VMs, our

experiments show performance improvement in
over-committed environments.

As future work, we plan to extend our tech-
nique to be integrated with VM migration. We ex-
pect that such integration can handle transient and
sustained memory overload efficiently, thereby
increasing the degree of consolidation while re-
ducing total migration cost in a data center.

Acknowledgements This research was supported by
Next-Generation Information Computing Development
Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education, Science
and Technology (2011-0020520).

References

1. Simons, J., Buell, J.: Virtualizing high performance
computing. SIGOPS Oper. Syst. Rev. 44(4), 136–145
(2010)

2. Lange, J., Pedretti, K., Dinda, P., Bae, C., Bridges, P.,
Soltero, P., Merritt, A.: Minimal-overhead virtualiza-
tion of a large scale supercomputer. In: Proceedings of
the 7th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, pp. 169–
180 (2011)

3. Iosup, A., Ostermann, S., Yigitbasi, M.N., Prodan, R.,
Fahringer, T., Epema, D.H.J.: Performance analysis
of cloud computing services for many-tasks scientific
computing. IEEE T Parall Distr 22(6), 931–945 (2010)

4. Magenheimer, D.: Memory Overcommit Without the
Commitment. Extended Abstract at the Xen Summit
Boston 2008 (2008)

5. Zhao, W., Wang, Z., Luo, Y.: Dynamic memory bal-
ancing for virtual machines. SIGOPS Oper. Syst. Rev.
43(3), 37–47 (2009)

6. Gupta, D., Lee, S., Vrable, M., Savage, S., Snoeren,
A.C., Varghese, G., Voelker, G.M., Vahdat, A.:
Difference engine: harnessing memory redundancy in
virtual machines. Commun. ACM 53(10), 85–93 (2008)

7. Barroso, L.A., Holzle, U.: The Datacenter as a Com-
puter: An Introduction to the Design of Warehouse-
Scale Machines. Morgan and Claypool Publishers
(2009)

8. Waldspurger, C.A.: Memory resource management in
VMware ESX server. SIGOPS Oper. Syst. Rev. 36(SI),
181–194 (2002)

9. Scwidefsky, M., Franke, H., Mansell, R., Raj, H.,
Osisek, D., Choi, J.: Collaborative memory manage-
ment in hosted linux environments. In: Proceedings of
the Linux Symposium, vol. 2. Ottawa, Canada (2006)

10. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau,
R.H.: Geiger: monitoring the buffer cache in a virtual

84 C. Min et al.

machine environment. SIGOPS Oper. Syst. Rev. 40(5),
14–24 (2006)

11. Lu, P., Shen, K.: Virtual machine memory access trac-
ing with hypervisor exclusive cache. In: Proceeding
of the 2007 USENIX Annual Technical Conference,
pp. 1–15. Berkeley, CA (2007)

12. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E.,
Limpach, C., Pratt, I., Warfield, A.: Live migration of
virtual machines, In: Proceedings of the 2nd Sympo-
sium on Networked Systems Design & Implementa-
tion, pp. 273–286 (2005)

13. Nelson, M., Lim, B.-H., Hutchins, G.: Fast transpar-
ent migration for virtual machines. In: Proceedings of
USENIX Annual Technical Conference (2005)

14. Hines, M.R., Gopalan, K.: Post-copy based live virtual
machine migration using adaptive pre-paging and dy-
namic self-ballooning. In: Proceedings of the Interna-
tional Conference on Virtual Execution Environments,
pp. 51–60 (2009)

15. Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G.,
Lawall, J.: Entropy: a ConsolidationManager for Clus-
ters. In: Proceedings of the International Conference
on Virtual Execution Environments, pp. 41–50 (2009)

16. Wood, T., Shenoy, P., Venkataramani, A.: Black-box
and gray-box strategies for virtual machine migration,
In: Proceedings of the 4th Symposium on Networked
Systems Design & Implementation, pp. 229–242 (2007)

17. Stage, A., Setzer, T.: Network-aware migration control
and scheduling of differentiated virtual machine work-
loads. In: Proceedings of ICSE Workshop on Software
Engineering Challenges of Cloud Computing, pp. 9–14
(2009)

18. Andreolini, M., Casolari, S., Colajanni, M., Mes-
sori, M.: Dynamic Load Management of Virtual Ma-
chines in Cloud Architectures. Lecture Notes of the
Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering 34(6), 201–214
(2010)

19. Williams, D., Weatherspoon, H., Jamjoom, H., Liu,
Y.: Overdriver: handling memory overload in an over-
subscribed cloud. In: Proceedings of the 7th ACM
SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments, pp. 205–216 (2011)

20. Mattson, R.L., Gecsei, J., Slutz, D., Traiger, I.L.: Eval-
uation techniques for storage hierarchies. IBM Syst. J.
9(2), 456–789 (1970)

21. Goldberg, R.P., Hassinger, R.: The double paging
anomaly. In: Proceedings of the National Computer
Conference and Exposition, pp. 195–199 (1974)

22. Sherman, S.W., Brice, R.S.: Performance of a data-
base manager in a virtual memory system. ACM Trans.
Database Syst. 1(4), 317–343 (1976)

23. Intel 64 and IA-32 Architectures Software Developers
Manual vol. 3B: System Programming Guide, Part 2.
Copyright 1997–2009 Intel Corporation.

24. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.:
Introduction to Algorithms, 3rd edn, pp. 308–329. The
MIT Press (2009)

25. Qureshi, M.K., Patt, Y.N.: Utility-based Cache Par-
titioning: A Low-overhead, High-performance, Run-
time Mechanism to Partition Shared Caches. In:
Proceedings of the 39th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pp. 423–432
(2006)

26. Bovet, D.P., Cesati, M.: Understanding the Linux
Kernel, 3rd edn. O’Reilly (2005)

27. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.:
kvm: the Linux virtual machine monitor. In: Proceed-
ings of the 2007 Ottawa Linux Symposium, pp. 225–230
(2007)

28. QEMU: http://wiki.qemu.org/ (2011). Accessed
15 August 2011

29. SPEC CPU2000: http://www.spec.org/cpu2000/ (2011).
Accessed 15 August 2011

30. SPECjbb2005: http://www.spec.org/jbb2005/ (2011).
Accessed 15 August 2011

31. The Apache Software Foundation: http://www.
apache.org/ (2011). Accessed 15 August 2011

32. http_load: http://www.acme.com/software/http_load
(2011). Accessed 15 August 2011

33. Hwang, W., Roh, Y., Park, Y., KPark, W., Park, K.H.:
HyperDealer: reference-pattern-aware instant mem-
ory balancing for consolidated virtual machines. In:
Proceeding of the 2010 IEEE 3rd International Con-
ference on Cloud Computing, pp. 426–434 (2010)

34. Milos, G., Myrray, D.G., Hand, S., Fetterman, M.A.:
Satori: enlightened page sharing. In: Proceedings of
the 2009 Conference on USENIX Annual Technical
Conference (2009)

35. Wong, T.M., Wilkes, J.: My cache or yours? Making
storage more exclusive. In: Proceedings of the
USENIX Annual Technical Conference, pp. 161–175.
Monterey, CA (2002)

36. Chen, Z., Zhou, Y., Li, K.: Eviction based placement
for storage caches. In: Proceedings of the USENIX
Annual Technical Conference, pp. 269–282. San
Antonio, TX (2003)

37. Milojicic, D.S., Douglis, F., Paindaveine, Y., Zhou, S.:
Process Migration, ACM Comput. Surv. 32(3), 241–299
(2010)

38. Kozuch, M., Satyanarayanan, M.: Internet suspend/
resume. In: Proceedings of the 4th IEEE Work-
shop on Mobile Computing Systems and Applications,
pp. 40–46 (2002)

http://wiki.qemu.org/
http://www.spec.org/cpu2000/
http://www.spec.org/jbb2005/
http://www.apache.org/
http://www.apache.org/
http://www.acme.com/software/http_load

	VMMB: Virtual Machine Memory Balancing for Unmodified Operating Systems
	Abstract
	Introduction
	Design of the System
	System Overview
	Building the LRU Histogram
	Dynamic Memory Balancing
	QoS Aware Memory Allocation
	Adaptive Changes to the Hot List Capacity
	Reclaiming the VM Memory

	VMM-level Swapping

	Evaluation
	Environmental Setup
	Miss Ratio Estimation
	Analysis on Double Paging
	Performance Overhead
	Effectiveness of Memory Balancing
	CPU Intensive + Memory Intensive Workloads
	Memory Intensive + Memory Intensive Workloads
	Mixed Workloads using Multiple VMs

	Related Work
	Dynamic Memory Balancing
	Virtual Machine Migration

	Conclusion and Future Work
	References

