IEICE Electronics Express, Vol.8, No.10, 748-754

Hardware assisted dynamic
memory balancing in virtual
machines

Changwoo Min"?*, Inhyuk Kim'"), Taehyoung Kim'®),
and Young Ik Eom'?

L School of Information & Communication Engineering,

Sungkyunkwan University

300 Cheoncheon-Dong, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, Korea
2 Samsung Electronics, 416, Maetan-3Dong, Yeongtong-Gu, Suwon, Gyeonggi-Do,
443-742, Korea

a) multics69@ece.skku.ac.kr

b) kkojiband @ ece.skku.ac.kr

¢) kiml5Sm@ece.skku.ac.kr

d) yieom@ece.skku.ac.kr

Abstract: Virtualization technology can reduce the total cost of
ownership by sharing resources with respect to the resource demand
of each guest. Therefore, an efficient resource sharing mechanism is
important for a virtual machine monitor (VMM). We introduce a
hardware assisted dynamic memory balancing mechanism that bal-
ances memory among guests. Our proposed scheme estimates memory
demand for each guest and periodically re-balances memory allocation
based on this estimation. In order to estimate working set size (WSS),
we use least recently used (LRU) histogram as a prediction model. Con-
struction of LRU histogram is performed in a guest transparent way
by using hardware memory management unit (MMU) virtualization
support. Our experiments show that the proposed scheme accurately
estimates the WSS with low overhead. They also show that it substan-
tially improves performance over static memory allocation.
Keywords: virtualization, working set, nested paging
Classification: Science and engineering for electronics

References

[1] C. A. Waldspurger, “Memory resource management in VMware ESX
server,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 181-194, 2002.

[2] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Geiger:
monitoring the buffer cache in a virtual machine environment,” SIGOPS
Oper. Syst. Rev., vol. 40, no. 5, pp. 14-24, 2006.

[3] P. Lu and K. Shen, “Virtual machine memory access tracing with hyper-
visor exclusive cache,” Proc. 2007 USENIX Annual Technical Conference,
Berkeley, CA, USA, pp. 1-15, 2007.

[4] W. Zhao, Z. Wang, and Y. Luo, “Dynamic Memory Balancing for Virtual
Machines,” SIGOPS Oper. Syst. Rev., vol. 43, no. 3, pp. 37-47, 2009.

748




IEICE Electronics Express, Vol.8, No.10, 748-754

[5] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger, “Evaluation tech-
niques for storage hierarchies,” IBM System Journal, vol. 9, no. 2, pp. 456—
789, 78-117, 1970.

[6] SPEC CPU2000. [Online] http://www.spec.org/cpu2000/

[7] SPEC CPU2006. [Online] http://www.spec.org/cpu2006/

1 Introduction

Efficient resource management is a key success factor in virtualization. How-
ever, allocating the proper amount of memory on demand is still challenging.
Even though static memory allocation among guests is an easy solution, it
can become a consolidation bottleneck.

In an effort to dynamically allocate memory in virtual machines (VMs),
recent studies [1, 2, 3, 4] have introduced various approaches. However these
studies still have limitations. Statistical sampling [1] and Geiger [2] cannot
induce growth or shrinkage of WSS. Hypervisor exclusive cache [3] cannot
be used for an OS without source code, since it requires modification of
guest kernel. Zhao et al. [4] proposed an LRU histogram [5] based approach,
however it has two major limitations. First, it suffers from performance
overhead in large WSS, because monitoring overhead increases linearly with
the number of pages. Second, the time needed to decide the allocation size
grows non-linearly according to the number of VMs, thereby deteriorating the
effectiveness of memory balancing. Since information needed to grow WSS
is not incorporated into the LRU histogram, it needs to iteratively monitor
the guest swapping frequency and the number of page fault to determine an
allocation size larger than its current allocation.

We introduce a novel approach to dynamically balance memory among
guests by using hardware MMU virtualization support. We use LRU his-
togram to estimate WSS for each guest; ballooning [1] is then used to reclaim
memory from guests. Our contributions, compared to prior work, are as fol-
lows: First, it is applicable to commercial off-the-shelf OSs whose source code
is not available, since our system does not require modification of guest kernel.
This is achieved by using the nested page faults supported by H/W MMU
virtualization in order to construct LRU histogram. Second, we present two
techniques that efficiently build LRU histogram. Weighted red-black tree is
proposed to calculate the stack distance in the worst case logarithmic time
and adaptive hot list resizing is introduced to control monitoring overhead.
Finally, we use over allocation technique to estimate WSS beyond the cur-
rent memory allocation. In a virtualized system, it is difficult to estimate
WSS larger than its current memory allocation, since LRU histogram is con-
structed using physical memory access. To estimate WSS beyond its current
allocation, our system allows a guest to allocate more than the allocation
size. The over-allocated memory is marked as VMM-level swappable; the ac-
cess information is used to estimate WSS beyond its current allocation. Since
LRU histogram contains the information needed for our system to shrink and

749



IEICE Electronics Express, Vol.8, No.10, 748-754

grow WSS, the allocation size can be drawn directly from the LRU histogram
in all cases.

2 Hardware assisted dynamic memory balancing

Our dynamic memory balancing mechanism consists of three parts: (a) moni-
toring memory access and constructing an LRU histogram for each guest, (b)
periodically determining the memory allocation size and resizing the number
of unmonitored pages to control the overhead, (c) enforcing the new alloca-
tion sizes by reclaiming the memory from the guests.

nested page fault major fault

(I o

HotList Warm List " Cold List

(not monitored, not swappable) (monitored, not swappable) (monitored, swappable)

i —-» page list — weighted red-black tree <> page movement

Fig. 1. Page list structure of a guest.

2.1 Memory access monitoring

Our system maintains a page list for each guest and intercept memory access.
To monitor the memory access of a guest, we turn off the presence bits in
the nested page table to trap the memory access in a guest transparently.
The trapped page’s stack distance is calculated and the corresponding LRU
histogram is incremented by one. The page is moved to the head of the page
list to maintain the order in the page list from the most to the least recently
accessed.

To minimize performance overhead, we design the page list structure as
illustrated in Fig. 1. Our system manages the page lists using three groups:
hot list, warm list, and cold list. To reduce the monitoring overhead, the pages
in the hot list are not monitored by turning on the presence bits. Hot list size
is dynamically changed to keep a balance between the monitoring overhead
and the accuracy of LRU histogram. On the contrary to the others, cold
pages are the over-allocated pages marked as VMM-level swappable. When
a VMM is under memory pressure, these pages will be selected as victims.
The histogram data of the cold list is used to capture WSS larger than its
current memory allocation. We will explain how to determine the size of each
list in Section 2.2.

When updating the LRU histogram, the most expensive operation is cal-
culating the stack distance. Because naive linear search takes the worst-case
linear time, it is inefficient and not scalable. For an efficient calculation, we
propose a weighted red-black tree. It is a kind of red-black tree whose node
is annotated by weight. Weight represents the total number of nodes in its

750



IEICE Electronics Express, Vol.8, No.10, 748-754

subtree. Since the nodes in a tree are ordered, the weight of left child is the
number of predecessor of a node and the weight of right child is the number
of successor of a node. For a node n, let Py denote the set of ancestors whose
successors include n. The distance of n is the sum of predecessors of Ps and
size of Ps. It takes the worst case logarithmic time.

2.2 Dynamic memory balancing
Our system periodically re-calculates the proper memory allocation size of
each guest for balancing. The time interval for this process is six seconds.
Let A; denote the size of the memory allocation for i-th guest, and B;
represent the memory size for the i-th guest to allow allocating. By the def-
inition of each page list described in the previous subsection, A; = H; + W;
and B; = A; + C;, where H;, W; and C; are the sizes of hot, warm and cold
list respectively. We define the WSS as the smallest memory allocation that
yields a page miss rate no larger than . WSS of the i-th guest, WSS;, can
be taken from LRU histogram. For QoS purposes, our system guarantees
the allocation of a minimum memory size M for each guest. The rest of the
memory is allocated proportionally by each guest’s WSS. Since the LRU his-
togram in our system also has memory access information that is larger than
the current allocation, we can calculate the memory allocation size directly
from the LRU histogram even in case of WSS growth. A; is determined by:

 T-MxN

A== T WSS, + M 1
zﬁJWS@ (1)

where T is the total memory size designated for the VMM and N is the
number of running guests. In all of our experiments, we set T" to 768 MB and
M to 128 MB. The over-allocation size, C; is calculated from B; by definition.
C; needs to be large enough to cope with WSS growth and small enough to
unload the idle memory by ballooning. We define B; = max (5 x BS;, A;),
where BS; is the smallest memory size that yields a page miss ratio no larger
than 7, and 3 is the ratio of the extra margin. In our experiments, a small
7 is effective in getting rid of outliers in the histogram. We set 7 to 2% for
cutting off the outliers of histogram and set § to 120% for monitoring the
WSS growth.

To control monitoring overhead while maintaining a reasonable histogram
accuracy, we determine the size of hot list, H; to be able to monitor a suf-
ficient number of nested page faults for an interval. To reduce the overhead
efficiently, H; needs to be adapted quickly according to the workload transi-
tion. For a fast adaption, we estimate H; directly from the LRU histogram.
We define E! as the estimated hot list size at the ¢-th interval for the i-th
guest to monitor F' number of page accesses. It is determined from the LRU
histogram, L by:

E! = min (maé((e), Ai) (2)

ec

T Ft—l
DL X G 2 F} (3)

751



IEICE Electronics Express, Vol.8, No.10, 748-754

where F'~1 is the number of monitored page accesses and M*~! is the sum of
the histogram entries for warm and cold list for the previous interval. If the
estimation from the histogram gives a new value (i.e. E! # Ef_l), we select
E! as H;. Otherwise, H; is adjusted adaptively by v x H;_1 considering if
F'=1is larger than F. In our experiments, F is set to 32,768 pages and v is
set to 5%.

2.3 Reclaiming guest memory
After the B; for each guest is determined, our system asks guests to change
their memory usage to B; by using ballooning. The reclaimed pages are
reported back to the VMM, and they are then assigned to the other guests
whose allocation sizes have increased.

3 Evaluation

Our system is implemented as an extension of KVM, an open source virtual
machine monitor, and uses Intel EPT for the hardware MMU virtualization.
Experiments are performed on a PC with a 2.67 GHz Intel i5 processor and
4 GB of physical memory. We use 12 benchmarks from SPEC CINT 2000 [6]
and 11 benchmarks from SPEC CINT 2006 [7] on Ubuntu 10.04.

3.1 System overhead

Fig. 2 (a) shows the normalized performance and the effectiveness of the pro-
posed optimization techniques. Without any optimization, the performance
overhead is fairly large. Using the weighted red-black tree helps performance
significantly, especially where WSS is large; the normalized performance im-
proves from 25% to 50%. Adaptive hot list resizing further reduces the over-
head, especially in workloads that heavily access memory; the performance
improves very closely to an unmonitored case, 98.38%. Even in the worst
case, vorter, the performance is reasonable, 96.24%. In Fig. 2 (b), we break
down the performance overhead. Around 40% of overhead comes from the
histogram update regardless of the workloads.

Although the performance overhead of the Zhao et al. method [4] was
at up to 24% in SPEC CINT 2000, the performance overhead of our system
was 1.76% in total and 3.76% at maximum. It shows that our optimization
techniques effectively control the overhead regardless of the workloads.

ONot monitored

“ Monitored without optimization ® histogram update * other overhead

B Monitored with weighted red-black tree 100%

B Monitored with weighted red-black tree + adaptive resizing °

S
8 100% 1 1 1 % 80%
g 80% 1 g 0%
E 60% 1 £ 40%
o 40% H H >
g yoa | 2 20%
E 0% 0%
E RS S S F R @S S &FS S S F RGPS
E @/ R C‘J@' Q‘b{v 05\0 9 40(\ ~g“’\ '@\&o& < 2N o@' Q‘b@ ¢,§° % 40'6' ~o“> @&O&
£
(a) Monitoring overhead (b) Overhead breakdown

Fig. 2. Monitoring overhead of SPEC2000.

752



E Lectrom'cs
E X press

© IEICE 2011

DOI: 10.1587/elex.8.748
Received March 29, 2011
Accepted April 18, 2011
Published May 25, 2011

IEICE Electronics Express, Vol.8, No.10, 748-754

SRR 5o PRtery A
& RS- NPC P AT P e o R o
o (Tt @g\\?’(\g «© QOO@'L% N\l o W (Fe© OB SN
1000 alocated memary — 1000 allocated memary ——
estimated W55 — estimated W55 ——
500 A B C . 800 A B C
DEj H UE] h
o o 600
% BO0 - 5
> - > .
: 400 N : 400 ‘_,, ’-ru
£ : £ .J h
200 [L HETNG L] 200 | pged St }_PRHL
“ m iy I i |
0
0 1000 2000 3000 4000 500Q BOOO 7000 0 1000 2000 3000 4000 5000 BOOO 7000
time (sec) time (sec)
(a) Memory allocation of SPEC2006-D (b) Memory allocation of SPEC2006-A
° ‘ ‘ baseline Wbalanced M best case ‘ ° ‘ baseline MWbalanced Mbest case ‘
£ 200% | £ 200%
g £
@ 150% £ 150%
- 2
= 100% = 100% -
3 2
TE 50% Té 50% -+
2 0% 2 0% |
QIO FF ISR & K& S SRS R
*o"’& %’@é‘o (ga@;\v& é\(‘\\ 0&‘2‘ 50&,\/@‘@ _sé\Q \&OO&Y‘ 6‘@ &\Q%(Ob&@ & q‘%\é‘ c‘f’& ,)%‘10 & R
& NS e SES & A & &
A N N RO
(c) Performance of SPEC2006-D (d) Performance of SPEC2006-A

Fig. 3. SPEC2006-D + SPEC2006-A.

3.2 Performance of multiple workloads

We examine how our memory balancing scheme interacts each other and im-
pacts on overall performance. We assign different workloads to two guests.
For test workloads, we run SPEC CINT 2006 benchmarks in different or-
ders. On guest;, we run the benchmarks in the descending order of WSS
(CINT2006-D). On guests, we run them in the ascending order (CINT2006-
A). Our system initially gives more memory to guest; and gradually moves
memory to guests over time. We evaluate the performance impact of mem-
ory balancing scheme using three different settings: baseline, balanced and
best case. Baseline is the performance that occurs when the total memory
is equally divided in two. To show the maximum performance gain of an
ideal memory balancing scheme, we measure the best case performance for
two guests assigning the total memory size respectively. The gap between
the baseline and the best case is the maximum theoretical gain.

Fig. 3 (a) and Fig. 3 (b) show the estimated WSS and the actual allocated
memory size over time, respectively. The normalized performances are shown
in Fig. 3 (c) and Fig. 3 (d). In the early stage (stage A), the three benchmarks
with the largest WSS run on guest; and the other three benchmarks with
the smallest WSS run on guests. Our system gives approximately 580 MB
memory to guest; and 180 MB to guests with respect to the estimated WSS.
Execution time of bzip2, gcc and perlbench are significantly reduced by giving
more memory. The performance gains over the baseline are close to the max-
imum performance gains: 9.6%, 47.1% and 35.9% respectively. Conversely,
the amount of memory given to the three benchmarks running on guests is
smaller than the amount of baseline. However the performance degradations
are negligible. The performance degradation of libquamtum, omnetpp and

753



IEICE Electronics Express, Vol.8, No.10, 748-754

h264ref are 4.7%, 7.8% and 0% respectively. In stage B, our system almost
equally divides the memory for two guests because their estimated WSSs are
similar. Under these circumstances, the monitoring overhead degrades the
performance. However, the total performance degradation for this stage is
small at 2.8%. Stage C has the opposite situation of stage A.

In terms of overall performance, our system achieves 7.5% performance
improvement including 2.8% performance degradation found in stage B. Con-
sidering the performance gain of best case is 11.1%, its improvement is quite
impressive.

4 Conclusion

We introduced a hardware assisted dynamic memory balancing scheme among
guests. It can deduce the WSS growth and shrinkage in a guest transpar-
ent way. We also present techniques that reduces the monitoring overhead
and estimates WSS larger than its current memory allocation. Performance
evaluations show that the proposed scheme significantly improves the perfor-
mance of tasks that suffer from insufficient memory with a low performance
overhead.

Acknowledgments

This research was supported by Future-based Technology Development Pro-
gram through the National Research Foundation of Korea (NRF) funded by
the Ministry of Education, Science and Technology (2010-0020730).

754



