
B. Murgante et al. (Eds.): ICCSA 2012, Part III, LNCS 7335, pp. 227–237, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Usage Pattern-Based Prefetching:
Quick Application Launch on Mobile Devices

Hokwon Song1,2, Changwoo Min1,2, Jeehong Kim2, and Young Ik Eom2

1 Samsung Electronics Co., Ltd., Suwon, Korea
2 School of Information and Communication Engineering

Sungkyunkwan University, Suwon, Korea
{hokwon,multics69,jjilong,yieom}@ece.skku.ac.kr

Abstract. The startup time of applications is very important as a user
perspective performance. If page faults occur frequently in the startup time, the
user experience is subjected to an adverse effect. To reduce page faults, the
prefetching scheme is used in the traditional OS. Previous studies proposed
various schemes, but the most research was conducted for desktop PCs or
special embedded devices. We propose the usage pattern-based prefetching
scheme which is suitable to mobile devices. Therefore, this paper focuses on the
user’s applications usage patterns and the improvement of the startup time of
application on mobile devices. To inspect the usage patterns, we collect the
dataset of the application usage and then analyze collected data. Additionally,
considering mobile devices which have relatively poor hardware resources, the
lightweight prediction model is employed in the new scheme. The proposed
scheme is implemented on both Android 2.2 and Linux kernel 2.6.29. It is
tested on the emulator and evaluated by using the dataset. The startup time is
improved about 5%, and the accuracy of the prediction is shown up to 59% for
the practical dataset.

Keywords: Prefetching, Usage pattern, Mobile device.

1 Introduction

Recently, the embedded system has extended the coverage to the land of desktop PCs
on the rapid development of hardware and software. Gradually, the change made
users interested in the performance of mobile devices. The performance can be
divided into the system performance, like CPU speed, memory size and display
resolution, and the user perspective performance such as the startup time, the
impression of a color and the user experience.

We focus on the improvement of the application’s startup time. Although the startup
time is one of the important user perspective performance factors, and the
performance of hardware has evolved considerably compared to the previous, the
startup time is still unsatisfying [11]. The main cause of the startup problem is the file
IO [9, 11]. Since the file IO is much slower than CPU and main memory [7], and a
task should be waiting until a page fault handler completes loading memory [8].

228 H. Song et al.

Obviously, the startup time increases when the access to secondary storage to load
pages occurs frequently. Therefore, the startup time will be dramatically improved if a
page fault does not occur. In the OS field, the prefetching scheme is a traditional
solution for reducing page faults [1, 2, 3, 10]. The number of page faults is decreased
by loading pages in advance of launching the application.

This paper proposes the Usage Pattern-based Prefetching scheme for mobile
devices called UPP. UPP predicts the next application based on the user’s application
usage patterns and fetches the memory pages of a predicted application in advance.
Our study introduces the lightweight prediction model and the special triggering time
for mobile devices. Mobile devices have more scanty resources than desktop PCs and
a different lifetime of applications.

UPP is implemented on both Android 2.2 and Linux kernel 2.6.29 and evaluated by
testing on the emulator.

This paper makes the following contributions:

• Observation of the application usage patterns between each application by
using the practical dataset

• Suggestion of the lightweight prediction scheme
• Development of the Usage Pattern-based Prefetching called UPP
• Implementation and evaluation of UPP.

The paper is organized as fallows. In Section 2, we review other related work and
discuss their efforts from the point of mobile devices. Section 3 analyzes the collected
workload to understand the application usage patterns of users. In Section 4, we
describe how to implement UPP, and provide the detail experimental setup and
evaluate the experimental results. Finally, we conclude the paper and comment our
future work in Section 5.

2 Related Work

2.1 Prefetching Scheme

In Linux and Windows, the prediction-based prefetching scheme is adopted for
desktop PCs. The representatives are Preload [9] and SuperFetch [3]. They load the
file-backed pages of an application which is expected to be executed in the near
future. Thus, the prefetcher should monitor and analyze the user’s access patterns. In
case of [9], the prefetcher runs periodically to gather data and prefetch fault pages.
Markov’s probability model is employed to predict the next application. Additionally,
they consider a multi-user environment.

The effectiveness of the prefetching scheme is influenced by the accuracy of
prediction model. Scheduler-Assisted Prefetching [1] finds the next task by using a
scheduler’s queue. The pages of the next task are loaded into memory when the time
quantum of current task is depleted until the base line. However, this scheme is
proposed under the limited environment which frequently leads to swap-out due to
heavy memory workload and does not consider the cold startup.

 Usage Pattern-Based Prefetching 229

In studies of [4] and [5], they proposed a RT-PLRU scheme to find the optimal
paging strategy. The scheme is focused on the time constraint of real time systems
based on NAND flash. The NAND flash memory has been widely used as a
secondary storage in the embedded systems. The RT-PLRU is a page replacement
policy of the combination of pinning and LRU. The pinning scheme preloads pages
and keeps them into main memory. It shows that the prefetching scheme contributes
to satisfaction of real-time requirement even if the NAND-based system has the high
read speed.

2.2 Smartphone Usages

Diversity in Smartphone Usage [6] is a comprehensive study of the smartphone use.
The study found several characterized application usages of users activities. The
application usage session described that users did not use installed applications as the
same frequency. Specially, it is the same interest of our study. The authors analyzed
the individual propensity of the user activities and their impact on energy
consumption and use of network. We also collect the dataset of application usage and
try to find patterns between the applications. Finally, the accuracy of the proposed
prediction model is evaluated based on the dataset.

3 The Dataset Analysis

In this section, we analyze the traced data which is in order of launched applications on
the smartphone. The relation between the applications will be inspected as application
usage patterns.

3.1 The Dataset Gathering

Our work is based on the practical workloads which are collected by the monitoring
applications on android mobile phones for a week. The application generates a log file
in which the information of the launched applications is accumulated such as a
start-time, the application’s name and the binary’s path. The dataset is summarized in
Table 1.

Table 1. The overview of the dataset

User # of applications launching # of installed applications

User 1 220 82
User 2 389 128
User 3 191 69
User 4 317 207

230 H. Song et al.

3.2 Application Popularity

The number of installed applications and the number of launched applications for each
user are shown in Fig.1 (a). Although the total installed applications are from 80 to
200, users were launched only partial applications from 15 to 45. Fig.1 (b) illustrates
the application popularity ratio which is concentrated in 18~31% applications. The
usage frequency of application is different, and only some applications are used
concentrically. This usage pattern is similar with the research of [6].

Fig. 1. (a) # of installed applications and # of launched applications for each user (b) The
application popularity ratio

3.3 Application Usage Patterns

To find the user’s application access patterns, the data is classified into the ordered
list of applications which are consecutively launched after each application finishes. It
is required to define the following notation.

• T(Index application): the ordered list of traced applications which are
consecutively executed after an Index application finishes.

For example, if a user sequentially executes applications like App1, App2, App3,
App1, App3, App1, App1 and App4, the reorganized data are represented by
T(App1)={App2, App3, App1, App4}, T(App2)={App3}, T(App3)={App1,App1} and
T(App4)=Null. Fig.2 depicts how to collect each T(App) regarding the example.

Fig. 2. Illustration of T(App) at time t

 Usage Pattern-Based Prefetching 231

In case that the number of elements is smaller than four, it is difficult to find a
meaningful pattern. Hence, only the T(APP) which is greater than four is analyzed to
study the usage patterns. Fig. 3 and Fig. 4 illustrate the proportion of applications that
starts after the application whose title is that of each graph, finishes. In Fig. 3, the user
1 executes Browser consecutively after using the Browser at the rate of 60% and
launches MMS after Contacts was closed at the 55% chance. As shown in Fig. 4, the
probability of beginning BeyondPod after the BeyondPod successively is 51%.
KakaoTalk is expected to be used again after the KakaoTalk at the 53% rate. In the
same way, the usage patterns of user 3 are launching Browser after Twitter and
Facebook at the rate of 83% and 50% for respectively. The many higher relations
between the applications are observed in other sets.

Fig. 3. Usage pattern of user 1

Fig. 4. Usage pattern of user 2

232 H. Song et al.

4 Design of UPP

4.1 The Application Prediction Model

The first-order Markov prediction model is applied to Behdad’s Preload [9]. Although
the Markov model is a renowned probability model, the more lightweight model is
required for mobile devices since mobile devices have poor hardware resources
compared to desktop PCs, and they are battery powered.

Considering the usage patterns observed in previous sessions, our prediction model
requires some features like the following. Firstly, the information of the application
that is consecutively executed is important. Secondly, the recency of the application
use as well as frequency information should be reflected, since the usage pattern
changes variously according to time. Finally, it should have low run-time overhead to
reduce the power consumption and the burden of computation time.

We propose a Window and Weighted Sum-based prediction scheme called WWS
that acquires a candidate based on the weighted sum of elements in the sliding
window. The similar approach, a Window-based Direct Address Counting (WDAC)
is adopted in the study [10].

The following notations are defined to explain the WWS mechanism.

• W(Element application): the sum of element application by WWS.
• C(Index application): the name of an element application which has the

maximum W(Element application) among T(Index application).

Fig. 5 depicts the algorithm on how to select the candidate when App1 finishes. App1
is the index application and the element applications are App3, App2, App3, App4,
App3 and App5 sequentially. The window size is assumed to six. The results of
W(element) are as follows; W(App2)=0.4, W(App3)=1.8, W(App4)=0.8 and
W(App5)=1.2. C(App1) is App3 which has the largest value. Therefore UPP loads the
pages of App3, when App1 finishes.

When updating the list, the new comer is added at the end of window, and the head of
window is deleted. To manage WWS, the memory is required as much as window size *
sizeof(Application identifier) for each application. It is a small amount. The computation
time is also negligible. Thus, WWS is a suitable scheme for mobile devices.

Fig. 5. WWS example

 Usage Pattern-Based Prefetching 233

4.2 The Selection of Pages for Prefetching

We focus on accessing pages to induce file IO operations. This kind of access can be
divided into two that are a major page fault that occurs when demand paging and
explicit file IO call such as read and write. Thus, UPP gathers the information of
pages from a major page fault and file IO calls during the application’s startup time.

4.3 The Triggering Time of Prefetching

The application is launched through the main screen application (or called the home
launcher) which has the entry points of all applications. In other words, the activating
time of the main screen is the interval between applications. As shown in Fig. 6, the
interval is enough to load fault pages. Thus, the prefetching is triggered when the
main screen is activated.

5 Evaluation

We explain the overall mechanism of UPP and discuss the results of experiment in
this section. The goal of the experiment is to evaluate the effectiveness of WWS on
the dataset and to improve startup time by the prefetching.

5.1 Implementation

UPP is composed of three components which are concreting prefetching lists, tracing
application usage and prefetching. Fig. 7 illustrates the mechanism of UPP.
The activity of concreting prefetching lists is represented by Arabic numbers (1~6).
The capital letters (A, B) show the flow of tracing application usage which is T(App).
The prefetching activity is predicting a candidate application C(App) and loading
memory pages that are referenced in the prefetching list. The small letters (a~c) are
explained as the prefetching sequence. The activities are implemented on both
Android 2.2 and Linux kernel 2.6.29.

Fig. 6. The triggering time of Prefetching (A: Predicting the next application, B: Loading pages)

234 H. Song et al.

Fig. 7. UPP mechanism

5.2 Experimental Setups

Experiment for WWS

The accuracy of WWS is estimated by using the dataset of Table 1 in off-line. The
window sizes are set to four and eight to observe the changes depending on various sizes.

Experiment for Prefetching

The prefetching is executed on an Android 2.2 emulator with Linux kernel 2.6.29.
The size of a target application is 2.31 Mbytes. The android platform informs the time
from the starting activity to the first exposed window at windowsVisible(). Hence, the
time notified by the android is employed as the startup time. We use the average time
of the multiple runs in cold startup for the prefetching and the no-prefetching.

5.3 Experimental Evaluation

WWS on the Dataset

We analyze the applications whose number of elements is greater than ten (n(T(App))
>10). Fig. 8 (a) and Fig. 9 (a) are each user’s application access pattern. Fig. 8 (b) and

 Usage Pattern-Based Prefetching 235

Fig. 9 (b) depict the accuracy of WWS scheme according to the window size of four
and eight. As shown in Fig. 8, the accuracy of WWS is at the rate of 54~59% if the
access ratio concentrates on a few applications. The WWS is effective at the similar
cases to Fig. 8 (a). Although a user launches various applications like Fig. 9 (a), we
can succeed to predict the next application correctly about 20% as in Fig. 9 (b). A
window size influences on the result of WWS slightly. Higher accuracy is shown in
the narrow range when only partial elements of T(App) are repeatedly launched in the
small set. Otherwise, if a few elements start repeatedly in the large set, better accuracy
is resulted in. The optimal window size strongly relies on the usage patterns. For that
reason, we leave finding on optimal window size as our future work.

Fig. 8. (a) Usage pattern for Browser (b) WWS accuracy of Browser’s candidate

Fig. 9. (a) Usage pattern for Twitter (b) WWS accuracy of Twitter’s candidate

236 H. Song et al.

Experiment for Prefetching

As shown in Fig. 10, the startup time with the prefetching is reduced by about 5%
compared to the no-prefetching.

Fig. 10. Performance evaluation of the prefetching

6 Conclusion

Previously, we comment that the application startup time is important as the user
perspective performance. If page faults occur frequently in the startup time, the user
experience is subjected to an adverse effect.

Our study shows that users have their own usage patterns for each application. We
propose a WWS scheme as a prediction model for mobile devices. WWS which
reflects the frequency and the recency shows meaningful accuracy for the datasets.
The scheme is low run-time overhead and low memory consumption. Thus, it is
acceptable to mobile devices.

The improvement of the startup time by the prefetching component of UPP is
smaller than our expectation since page faults still remain.

As our future work, we will study to find the best prediction model and optimize
UPP.

Acknowledgments. This research was supported by the MKE(The Ministry of
Knowledge Economy), Korea, under the ITRC(Information Technology Research
Center) support program (NIPA-2012-(H0301-12-3001))supervised by the
NIPA(National IT Industry Promotion Agency).

References

1. Belogolov, S.A., Park, J., Hong, S.: Scheduler-Assisted Prefetching: Efficient Demand
Paging for Embedded Systems. In: Proc. the 14th IEEE International Conference on
Embedded and Real-Time Computation Systems and Applications (RTCSA), pp. 111–119
(2008)

 Usage Pattern-Based Prefetching 237

2. Chiou, D., et al.: Scheduler-Based Prefetching for Multilevel Memories. MIT Computation
Structures Group Memo 444 (2001)

3. Microsoft. Windows PC Accelerators, http://msdn.microsoft.com/
en-us/windows/hardware/gg463388.aspx (updated: October 8, 2010)

4. Kim, J., Lee, D., Lee, C., Kim, K.: RT-PLRU: A New Paging Scheme for Real-Time
Execution of Program Codes on NAND Flash Memory for Portable Media Players. IEEE
Transactions on Computers 60(8) (2011)

5. Kim, J., Lee, D., Kim, K., Ha, E.: Real-Time Program Execution on NAND Flash Memory
for Portable Media Players. In: Real-Time Systems Symposium, pp. 244–255 (2008)

6. Falaki, H., Mahajan, R., Kandula, S.: Diversity in Smartphone Usage. In: MobiSys (2010)
7. Compressed Caching for Linux: http://code.google.com/p/compcache/
8. Bovet, D.P., Cesati, M.: Understanding the Linux Kernel, 3rd edn. O’Reilly (2005)
9. Esfahbod, B.: Preload-An adaptive prefetching daemon. Master’s thesis, Graduate

Department of Computer Science, University of Toronto, Canada (2006)
10. Park, D., Du, D.H.C.: Mass Storage Systems and Technologies (MSST). In: 2011 IEEE

27th Symposium, pp. 1–11 (2011)
11. Joo, Y., Ryu, J., Park, S., Shin, K.G.: FAST: Quick Application Launch on Solid-State

Drives. In: Proc. FAST 2011 Proceedings of the 9th USENIX Conference on File and
Storage Technologies (2011)

	Usage Pattern-Based Prefetching: Quick Application Launch on Mobile Devices
	Introduction
	Related Work
	Prefetching Scheme
	Smartphone Usages

	The Dataset Analysis
	The Dataset Gathering
	Application Popularity
	Application Usage Patterns

	Design of UPP
	The Application Prediction Model
	The Selection of Pages for Prefetching
	The Triggering Time of Prefetching

	Evaluation
	Implementation
	Experimental Setups
	Experimental Evaluation

	Conclusion
	References

