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Abstract. The startup time of applications is very important as a user 
perspective performance. If page faults occur frequently in the startup time, the 
user experience is subjected to an adverse effect. To reduce page faults, the 
prefetching scheme is used in the traditional OS. Previous studies proposed 
various schemes, but the most research was conducted for desktop PCs or 
special embedded devices. We propose the usage pattern-based prefetching 
scheme which is suitable to mobile devices. Therefore, this paper focuses on the 
user’s applications usage patterns and the improvement of the startup time of 
application on mobile devices. To inspect the usage patterns, we collect the 
dataset of the application usage and then analyze collected data. Additionally, 
considering mobile devices which have relatively poor hardware resources, the 
lightweight prediction model is employed in the new scheme. The proposed 
scheme is implemented on both Android 2.2 and Linux kernel 2.6.29. It is 
tested on the emulator and evaluated by using the dataset. The startup time is 
improved about 5%, and the accuracy of the prediction is shown up to 59% for 
the practical dataset. 
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1 Introduction 

Recently, the embedded system has extended the coverage to the land of desktop PCs 
on the rapid development of hardware and software. Gradually, the change made 
users interested in the performance of mobile devices. The performance can be 
divided into the system performance, like CPU speed, memory size and display 
resolution, and the user perspective performance such as the startup time, the 
impression of a color and the user experience. 

We focus on the improvement of the application’s startup time. Although the startup 
time is one of the important user perspective performance factors, and the 
performance of hardware has evolved considerably compared to the previous, the 
startup time is still unsatisfying [11]. The main cause of the startup problem is the file 
IO [9, 11]. Since the file IO is much slower than CPU and main memory [7], and a 
task should be waiting until a page fault handler completes loading memory [8]. 
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Obviously, the startup time increases when the access to secondary storage to load 
pages occurs frequently. Therefore, the startup time will be dramatically improved if a 
page fault does not occur. In the OS field, the prefetching scheme is a traditional 
solution for reducing page faults [1, 2, 3, 10]. The number of page faults is decreased 
by loading pages in advance of launching the application. 

This paper proposes the Usage Pattern-based Prefetching scheme for mobile 
devices called UPP. UPP predicts the next application based on the user’s application 
usage patterns and fetches the memory pages of a predicted application in advance. 
Our study introduces the lightweight prediction model and the special triggering time 
for mobile devices. Mobile devices have more scanty resources than desktop PCs and 
a different lifetime of applications.  

UPP is implemented on both Android 2.2 and Linux kernel 2.6.29 and evaluated by 
testing on the emulator. 

This paper makes the following contributions: 

• Observation of the application usage patterns between each application by 
using the practical dataset 

• Suggestion of the lightweight prediction scheme 
• Development of the Usage Pattern-based Prefetching called UPP 
• Implementation and evaluation of UPP. 

The paper is organized as fallows. In Section 2, we review other related work and 
discuss their efforts from the point of mobile devices. Section 3 analyzes the collected 
workload to understand the application usage patterns of users. In Section 4, we 
describe how to implement UPP, and provide the detail experimental setup and 
evaluate the experimental results. Finally, we conclude the paper and comment our 
future work in Section 5. 

2 Related Work 

2.1 Prefetching Scheme 

In Linux and Windows, the prediction-based prefetching scheme is adopted for 
desktop PCs. The representatives are Preload [9] and SuperFetch [3]. They load the 
file-backed pages of an application which is expected to be executed in the near 
future. Thus, the prefetcher should monitor and analyze the user’s access patterns. In 
case of [9], the prefetcher runs periodically to gather data and prefetch fault pages. 
Markov’s probability model is employed to predict the next application. Additionally, 
they consider a multi-user environment.  

The effectiveness of the prefetching scheme is influenced by the accuracy of 
prediction model. Scheduler-Assisted Prefetching [1] finds the next task by using a 
scheduler’s queue. The pages of the next task are loaded into memory when the time 
quantum of current task is depleted until the base line. However, this scheme is 
proposed under the limited environment which frequently leads to swap-out due to 
heavy memory workload and does not consider the cold startup. 
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In studies of [4] and [5], they proposed a RT-PLRU scheme to find the optimal 
paging strategy. The scheme is focused on the time constraint of real time systems 
based on NAND flash. The NAND flash memory has been widely used as a 
secondary storage in the embedded systems. The RT-PLRU is a page replacement 
policy of the combination of pinning and LRU. The pinning scheme preloads pages 
and keeps them into main memory. It shows that the prefetching scheme contributes 
to satisfaction of real-time requirement even if the NAND-based system has the high 
read speed. 

2.2 Smartphone Usages 

Diversity in Smartphone Usage [6] is a comprehensive study of the smartphone use. 
The study found several characterized application usages of users activities. The 
application usage session described that users did not use installed applications as the 
same frequency. Specially, it is the same interest of our study. The authors analyzed 
the individual propensity of the user activities and their impact on energy 
consumption and use of network. We also collect the dataset of application usage and 
try to find patterns between the applications. Finally, the accuracy of the proposed 
prediction model is evaluated based on the dataset. 

3 The Dataset Analysis 

In this section, we analyze the traced data which is in order of launched applications on 
the smartphone. The relation between the applications will be inspected as application 
usage patterns. 

3.1 The Dataset Gathering 

Our work is based on the practical workloads which are collected by the monitoring 
applications on android mobile phones for a week. The application generates a log file 
in which the information of the launched applications is accumulated such as a  
start-time, the application’s name and the binary’s path. The dataset is summarized in 
Table 1. 

Table 1. The overview of the dataset 

User # of applications launching # of installed applications 

User 1 220 82 
User 2 389 128 
User 3 191 69 
User 4 317 207 



230 H. Song et al. 

3.2 Application Popularity 

The number of installed applications and the number of launched applications for each 
user are shown in Fig.1 (a). Although the total installed applications are from 80 to 
200, users were launched only partial applications from 15 to 45. Fig.1 (b) illustrates 
the application popularity ratio which is concentrated in 18~31% applications. The 
usage frequency of application is different, and only some applications are used 
concentrically. This usage pattern is similar with the research of [6]. 

 

Fig. 1. (a) # of installed applications and # of launched applications for each user (b) The 
application popularity ratio 

3.3 Application Usage Patterns 

To find the user’s application access patterns, the data is classified into the ordered 
list of applications which are consecutively launched after each application finishes. It 
is required to define the following notation. 

• T(Index application): the ordered list of traced applications which are 
consecutively executed after an Index application finishes. 

For example, if a user sequentially executes applications like  App1, App2, App3, 
App1, App3, App1, App1 and App4, the reorganized data are represented by 
T(App1)={App2, App3, App1, App4}, T(App2)={App3}, T(App3)={App1,App1} and  
T(App4)=Null. Fig.2 depicts how to collect each T(App) regarding the example. 

 

Fig. 2. Illustration of T(App) at time t 
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In case that the number of elements is smaller than four, it is difficult to find a 
meaningful pattern. Hence, only the T(APP) which is greater than four is analyzed to 
study the usage patterns. Fig. 3 and Fig. 4 illustrate the proportion of applications that 
starts after the application whose title is that of each graph, finishes. In Fig. 3, the user 
1 executes Browser consecutively after using the Browser at the rate of 60% and 
launches MMS after Contacts was closed at the 55% chance. As shown in Fig. 4, the 
probability of beginning BeyondPod after the BeyondPod successively is 51%. 
KakaoTalk is expected to be used again after the KakaoTalk at the 53% rate. In the 
same way, the usage patterns of user 3 are launching Browser after Twitter and 
Facebook at the rate of 83% and 50% for respectively. The many higher relations 
between the applications are observed in other sets. 
 

 

Fig. 3. Usage pattern of user 1 

Fig. 4. Usage pattern of user 2 
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4 Design of UPP 

4.1 The Application Prediction Model 

The first-order Markov prediction model is applied to Behdad’s Preload [9]. Although 
the Markov model is a renowned probability model, the more lightweight model is 
required for mobile devices since mobile devices have poor hardware resources 
compared to desktop PCs, and they are battery powered. 

Considering the usage patterns observed in previous sessions, our prediction model 
requires some features like the following. Firstly, the information of the application 
that is consecutively executed is important. Secondly, the recency of the application 
use as well as frequency information should be reflected, since the usage pattern 
changes variously according to time. Finally, it should have low run-time overhead to 
reduce the power consumption and the burden of computation time. 

We propose a Window and Weighted Sum-based prediction scheme called WWS 
that acquires a candidate based on the weighted sum of elements in the sliding 
window. The similar approach, a Window-based Direct Address Counting (WDAC) 
is adopted in the study [10].  

The following notations are defined to explain the WWS mechanism. 

• W(Element application): the sum of element application by WWS. 
• C(Index application): the name of an element application which has the 

maximum W(Element application) among T(Index application). 

Fig. 5 depicts the algorithm on how to select the candidate when App1 finishes. App1 
is the index application and the element applications are App3, App2, App3, App4, 
App3 and App5 sequentially. The window size is assumed to six. The results of 
W(element) are as follows; W(App2)=0.4, W(App3)=1.8, W(App4)=0.8 and 
W(App5)=1.2. C(App1) is App3 which has the largest value. Therefore UPP loads the 
pages of App3, when App1 finishes. 

When updating the list, the new comer is added at the end of window, and the head of 
window is deleted. To manage WWS, the memory is required as much as window size * 
sizeof(Application identifier) for each application. It is a small amount. The computation 
time is also negligible. Thus, WWS is a suitable scheme for mobile devices. 

 

Fig. 5. WWS example 
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4.2 The Selection of Pages for Prefetching 

We focus on accessing pages to induce file IO operations. This kind of access can be 
divided into two that are a major page fault that occurs when demand paging and 
explicit file IO call such as read and write. Thus, UPP gathers the information of 
pages from a major page fault and file IO calls during the application’s startup time. 

4.3 The Triggering Time of Prefetching 

The application is launched through the main screen application (or called the home 
launcher) which has the entry points of all applications. In other words, the activating 
time of the main screen is the interval between applications. As shown in Fig. 6, the 
interval is enough to load fault pages. Thus, the prefetching is triggered when the 
main screen is activated. 

5 Evaluation 

We explain the overall mechanism of UPP and discuss the results of experiment in 
this section. The goal of the experiment is to evaluate the effectiveness of WWS on 
the dataset and to improve startup time by the prefetching. 

5.1 Implementation 

UPP is composed of three components which are concreting prefetching lists, tracing 
application usage and prefetching. Fig. 7 illustrates the mechanism of UPP.  
The activity of concreting prefetching lists is represented by Arabic numbers (1~6). 
The capital letters (A, B) show the flow of tracing application usage which is T(App). 
The prefetching activity is predicting a candidate application C(App) and loading 
memory pages that are referenced in the prefetching list. The small letters (a~c) are 
explained as the prefetching sequence. The activities are implemented on both 
Android 2.2 and Linux kernel 2.6.29. 
 

 
Fig. 6. The triggering time of Prefetching (A: Predicting the next application, B: Loading pages) 
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Fig. 7. UPP mechanism 

5.2 Experimental Setups 

Experiment for WWS 

The accuracy of WWS is estimated by using the dataset of Table 1 in off-line. The 
window sizes are set to four and eight to observe the changes depending on various sizes.  

Experiment for Prefetching 

The prefetching is executed on an Android 2.2 emulator with Linux kernel 2.6.29.  
The size of a target application is 2.31 Mbytes. The android platform informs the time 
from the starting activity to the first exposed window at windowsVisible(). Hence, the 
time notified by the android is employed as the startup time. We use the average time 
of the multiple runs in cold startup for the prefetching and the no-prefetching. 

5.3 Experimental Evaluation 

WWS on the Dataset 

We analyze the applications whose number of elements is greater than ten (n(T(App)) 
>10). Fig. 8 (a) and Fig. 9 (a) are each user’s application access pattern. Fig. 8 (b) and 
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Fig. 9 (b) depict the accuracy of WWS scheme according to the window size of four 
and eight. As shown in Fig. 8, the accuracy of WWS is at the rate of 54~59% if the 
access ratio concentrates on a few applications. The WWS is effective at the similar 
cases to Fig. 8 (a). Although a user launches various applications like Fig. 9 (a), we 
can succeed to predict the next application correctly about 20% as in Fig. 9 (b). A 
window size influences on the result of WWS slightly. Higher accuracy is shown in 
the narrow range when only partial elements of T(App) are repeatedly launched in the 
small set. Otherwise, if a few elements start repeatedly in the large set, better accuracy 
is resulted in. The optimal window size strongly relies on the usage patterns. For that 
reason, we leave finding on optimal window size as our future work. 

 

Fig. 8. (a) Usage pattern for Browser (b) WWS accuracy of Browser’s candidate 

 

Fig. 9. (a) Usage pattern for Twitter (b) WWS accuracy of Twitter’s candidate 
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Experiment for Prefetching 

As shown in Fig. 10, the startup time with the prefetching is reduced by about 5% 
compared to the no-prefetching. 

 

Fig. 10. Performance evaluation of the prefetching 

6 Conclusion 

Previously, we comment that the application startup time is important as the user 
perspective performance. If page faults occur frequently in the startup time, the user 
experience is subjected to an adverse effect. 

Our study shows that users have their own usage patterns for each application. We 
propose a WWS scheme as a prediction model for mobile devices. WWS which 
reflects the frequency and the recency shows meaningful accuracy for the datasets. 
The scheme is low run-time overhead and low memory consumption. Thus, it is 
acceptable to mobile devices.  

The improvement of the startup time by the prefetching component of UPP is 
smaller than our expectation since page faults still remain. 

As our future work, we will study to find the best prediction model and optimize 
UPP. 
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