2510

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.9 SEPTEMBER 2014

[LETTER

Block Utilization-Aware Buffer Replacement Scheme for Mobile

NAND Flash Storage**

Dong Hyun KANG', Changwoo MIN*, Nonmembers, and Young Ik EOM'®, Member

SUMMARY NAND flash storage devices, such as eMMCs and mi-
croSD cards, are now widely used in mobile devices. In this paper, we pro-
pose a novel buffer replacement scheme for mobile NAND flash storages.
It efficiently improves write performance by evicting pages flash-friendly
and maintains high cache hit ratios by managing pages in order of recency.
Our experimental results show that the proposed scheme outperforms the
best performing scheme in the recent literature, Sp.Clock, by 48%.

key words: buffer replacement scheme, NAND flash storage, mobile de-
vices

1. Introduction

Mobile devices, such as smartphones and tablets, are be-
coming ever more popular. According to a Gartner forecast,
the number of mobile applications targeting smartphones
and tablets will surpass that of native PC applications by
2015[1]. Moreover, mobile NAND flash storages, such as
eMMCs and microSD cards, have now become the norm
in the mobile devices to store applications and user data.
This is because NAND flash storage has many characteris-
tics that are suitable for mobile devices, such as small size,
low power consumption, and shock resistance. However, a
recent study shows that storage performance indeed affects
the performance of commonly used applications in mobile
devices [2]. Also, most I/O stacks in operating systems as-
sume the performance characteristics of hard disk drives.
Thus, optimizing 1/O performance for mobile devices has
been proposed in various OS layers. In particular, there has
been extensive research in buffer replacement schemes for
NAND flash storage, because the buffer replacement policy
plays an important role in obtaining high performance: de-
ciding which pages to keep in memory to improve cache hit
ratio and which pages to evict to reduce /O cost.

Several recent studies extend the traditional replace-
ment schemes, such as LRU or Clock, to exploit the unique

Manuscript received January 31, 2014.
Manuscript revised May 1, 2014.

"The authors are with College of Information and Communi-

cation Engineering, Sungkyunkwan University, Suwon, Korea.
“Presently, with Samsung Electronics, Suwon, Korea.

“*This research was supported by Next-Generation Information
Computing Development Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science,
ICT&Future Planning (2010-0020730) and the MSIP (Ministry of
Science, ICT&Future Planning), Korea, under the ITRC (Informa-
tion Technology Research Center) support program (NIPA-2014
(H0301-14-1020)) supervised by the NIPA (National IT Industry
Promotion Agency).

a) E-mail: yieom@skku.edu (Corresponding author)

DOI: 10.1587/transinf.2014EDL8021

performance characteristics of NAND flash storage: asym-
metric performance between reads and writes and perfor-
mance disparity between sequential and random write pat-
terns. CFLRU [3] exploits asymmetric latency between
reads and writes. It prefers to evict clean pages rather than
dirty pages to reduce write operations. However, CFLRU
generates random writes and results in low performance,
because it does not consider write patterns during eviction.
To consider write patterns, FAB [4] selects an erase block
including the largest number of dirty pages and it simul-
taneously evicts multiple pages in the block to reduce the
garbage collection cost in NAND flash storage. (For brevity,
we will use block as NAND flash erase block throughout this
paper.) BPLRU [5] follows this direction more aggressively:
for completely filled block-level eviction, it pads pages not
in the block. Though the FAB and BPLRU can reduce write
cost by considering write patterns, they have two limita-
tions: first, they do not consider clean pages and thus cache
hit ratio can deteriorate. Second, since the unit of eviction
is not a page but a block, hot dirty pages can be evicted
early and the early eviction can generate many unnecessary
writes. Sp.Clock [6] is based on the Clock scheme and mod-
ifies it to keep the pages in order of sector number rather
than recency. The Sp.Clock evicts pages in sector number
order to produce the sorted write patterns and it leads to bet-
ter performance compared to unsorted ones. However, the
recency is limitedly reflected only by the reference bit, and
the sorted writes exploit the write performance characteris-
tics of NAND flash storage in a limited manner.

In this paper, we propose a novel buffer replacement
scheme for mobile NAND flash storage to improve the write
performance and maintain a high cache hit ratio simultane-
ously. We introduce unique write performance characteris-
tics of NAND flash storage, which means that writing more
pages per block leads to higher write performance by re-
ducing fragmentation in the flash translation layer (FTL).
We call this Maximizing Block Utilization (MBU) princi-
ple. We select the Clock scheme as a baseline for getting
high cache hit ratio and extend it by exploiting the MBU
principle for high write performance. The key idea of our
scheme is to evict a page that belongs to the block with many
dirty pages in it, i.e., high block utilization. Our experi-
mental results on three real-world traces with two microSD
cards show that our scheme outperforms the state-of-the-art
scheme by up to 48%.

Copyright © 2014 The Institute of Electronics, Information and Communication Engineers

LETTER

2. Block Utilization-Aware Buffer Replacement Scheme
2.1 Maximizing Block Utilization (MBU) Principle

FTL maintains a mapping table between the logical address
from the host and the physical address in NAND flash chips,
and performs garbage collection that reclaims invalid pages
and migrates valid pages to new locations. Many approaches
have been proposed to consider write patterns because se-
quential write patterns reduce the garbage collection cost
by mitigating internal fragmentation of the flash block [4]-
[7]. A common approach to produce sequential write pat-
tern is to write all pages in a block simultaneously [4], [5],
[7] and to write pages in order of page number [6]. Previ-
ous studies show that block-sized random write performance
approaches the maximum sequential write performance and
page-sized random write performance approaches the min-
imum write performance [7]. We explore between the two
extremes. Our hypothesis is that if we write x% pages
in a block (i.e., the block utilization is x%), the sustained
write performance of such a write pattern will be a mono-
tonic increasing function of x. We measured the through-
put over different block utilizations on two commercial mi-
croSD cards, Patriot 16GB (10 Class) and Adata 16GB (6
Class), to verify our hypothesis. For measurement, we as-
sume that the block size is 4 MB according to their prod-
uct specifications. We performed 4 KB random writes ac-
cording to different block utilizations, 25%, 50%, 75%, and
100%. In Fig. 1, we show the throughput of 1 GB writes
over the four different block utilizations. As we expected,
the write throughput increases as the block utilization is
higher. It clearly shows that the maximizing block utiliza-
tion (MBU) principle should be a key for optimizing write
performance in NAND flash storage by minimizing frag-
mentation

2.2 Design of the Buffer Replacement Scheme

Our scheme is implemented based on Clock scheme to
maintain high cache hit ratio and also exploits MBU prin-
ciple to improve the write performance of NAND flash stor-
age. In this section, we describe three main techniques used
in our scheme. First, our scheme maintains a reference
count instead of the reference bit of Clock scheme to re-
duce the number of expensive write operations and to keep
cache hit ratio as high as possible. Second, our scheme di-

i
o

T
Adata 1
Patriot SZ_SZ1

Throughput(MB)

o N M O o
T
I

[~ PRA ,_5&
25 50 75 100
Block Utilization(%)

Fig.1 Write throughputs for synthetic traces with different block utiliza-
tions on real microSD cards.

2511

vides dirty pages in the circular list of the Clock scheme into
several lists based on their sector numbers and then sorts
them in each list to produce sorted write patterns eventually.
This is to optimize the write performance as mentioned in
Sp.Clock [6]. Third, our scheme performs eviction at the
granularity of page rather than at the granularity of block.
By doing so, it can mitigate early eviction of hot pages and
eliminate unnecessary write operations.

Figure 2 explains the details of our replacement
scheme. It uses a reference count for each page and it is set
whenever that page is accessed, similarly to Clock scheme
(Line 12, 14 - 15). If a clean page is accessed, our scheme
always sets its reference count to 1 (Line 12). Otherwise, its
reference count is set in a predetermined manner according
to the block utilization (Line 14 - 15). In our scheme, block
utilization is calculated as the ratio of the number of dirty
pages, whose reference count is zero, in a block (Line 14 -
15, 36). If a dirty page, which belongs to a block with low
block utilization is accessed, our scheme sets its reference
count to a large value for maintaining it longer in the cir-

page #t—hand = null, *s—hand = null;

1

2 void Algorithm(page =p) {

3 if (p is not in the buffer cache) {

4 if (the buffer cache is full) {

5 page *v = choose._victim();

6 evict v;

7 }

8 if (t—hand is null) t—hand = p;

9 else insert p into the position of t—hand;

10 if (p.status is dirty) insert p into the sorted list of p.block;
1 }

12 if (p.status is clean) p.reference_count = 1;

13 else {

14 p.reference_count = ceil(

15 4 « p.block.zero / number of pages per block);

16 }

17}

18 page *choose_victim() {
19 while (true) {

20 if (t—hand.reference_count is 0) {

21 if (t—hand.status is clean) return t—hand;

2 if (s—hand is null)

23 s—hand = the first page in the sorted list of t—hand.block;
24 while (true) {

25 page s = s—hand;

26 if (s—hand is the last of the block)

27 s—hand = the first page

28 in the sorted list of t—hand.block;

29 else {

30 s—hand = the next page in the sorted list of the block;
31 return s;

) }

33 }

34 }

35 t—hand.reference_count——;

36 if (t—hand.reference_count is 0) p.block.zero++;

37 t—hand = the next page of t—hand in the circular list;

Fig.2 The pseudo-code of the our replacement scheme.

2512
(a) W1: Web browsing (b) W2: Video streaming (c) W3: Mixed
1 T T T 0.7 T T T 1 T T T
0.9 |7 =
0.8 - =
07 L CFLRU 4
FAB
0.6 Sp.Clock —
Our Scheme
05 L L L 02 L L L 05 L L L

0 16 32 48 64 0 16 32 48 64 0 16 32 48 64
Cache Size(MB) Cache Size(MB) Cache Size(MB)

Fig.3 Cache hit ratios.

cular list (For 25%, 50%, 75%, and 100% block utilization,
our scheme linearly sets the reference count to 4, 3, 2, and
1, respectively, because the performance of linear approach
is quite similar to that of non-linear approach). To shape
evicted dirty pages to sequential write pattern, our scheme
manages two hands, r-hand and s-hand, to select a victim.
In order to select a victim page, our scheme firsts checks
the reference count of each page using #-hand. If the refer-
ence count of the page pointed by 7-hand is larger than zero,
our scheme decreases its reference count by one and for-
wards #-hand to the next page (Line 35, 37). Otherwise, our
scheme checks whether the page pointed by t-hand is clean
or dirty. If the pointed page is clean, it is instantly evicted
(Line 21). Otherwise, our scheme selects another dirty page
using s-hand. S-hand scans dirty pages belonging to a block
in order of sector number and then evicts the page pointed
by s-hand instead of the page pointed by #-hand for flash-
friendly write patterns (Line 29 - 31). After evicting the
page pointed by s-hand, our scheme inserts a new page into
the position of #-hand (Line 9). If s-hand is not set or points
the last dirty page in the block, s-hand is set to the smallest
sector number in the block which includes the page pointed
to by t-hand (Line 22 - 23, 26 - 28).

3. Evaluation

We evaluated the performance of our scheme on a system
with a dual-core Intel Atom CPU and 2 GB memory. Also,
we used Linux Kernel 3.2.0 version and ext3 file system.
We followed the testing methodology of the prior work [6]
with three steps: (1) Obtaining before-cache trace which is
a page cache access trace using it as an input to the cache
simulator. (2) Cache simulation, which emulates the re-
placement schemes and generates evicted traces as a re-
sult of the simulation. (3) Replaying, which replays the
evicted traces on real microSD cards with 0_DIRECT option.
We used the before-cache traces obtained from Sp.Clock [6]
for comparison. These are composed of three real traces
from an Android smartphone: W1 for web browsing, W2
for video streaming, and W3 for mixed applications exe-
cution. We implemented flash-aware replacement schemes
such as CFLRU, FAB, and Sp.Clock to compare our scheme
and performed the experiments on the microSD cards men-
tioned in Sect.2.1. We set the block size to 4 MB and var-
ied the cache size from 4 MB to 64 MB. Figure 3 shows
cache hit ratios according to the cache size from 4MB to

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.9 SEPTEMBER 2014

(a) W1: Web browsing (b) W2: Video streaming (c) W3: Mixed
40 T T T 400 T T T 400 T T T
CFLRU
30 FAB <4 300 - 4 300 E
Sp.Clock
Our Scheme ————
N AN
10 P =4 100 | — — E
0 L L L 0 L L L —

0 16 32 48 64 0 16 32 48
Cache Size(MB) Cache Size(MB)

Cache Size(MB)

Fig.4 Elapsed time of Patriot microSD card.

(a) W1: Web browsing (b) W2: Video streaming (c) W3: Mixed
40 T T 400 T T T 400 T T T

CFL‘RU
30 FAB - 300 - 4 300 4
Sp.Clock

Our Scheme ————

20 |, 4 200 *L"“ﬂ* 200 |- .

0f—— 100} =

0 L L L 0 L L L —
0 16 32 48 64 0 16 32 48

Cache Size(MB) Cache Size(MB)

Cache Size(MB)

Fig.5 Elapsed time of Adata microSD card.

64MB. In Fig. 3, our scheme shows comparable cache hit ra-
tios to other three replacement schemes, even though pages
in the block are evicted in order of sector number. This is
because our scheme considers temporal locality effectively
and mitigates early eviction. Figure 4 and Fig.5 show the
elapsed time of our scheme along with the comparison to
other schemes. They clearly show that our replacement
scheme improves performance of mobile NAND flash stor-
age. Especially, it outperforms the state-of-the-art replace-
ment scheme, Sp.Clock, by 33% for W1, 12% for W2, and
48% for W3. The reason is that our approach prefers to
evict clean pages over dirty pages as well as it sequentially
evicts dirty pages that belong to the block with high block
utilization for minimizing fragmentation in FTL. As a result,
our scheme leads to higher write performance with lower
garbage collection overhead.

4. Conclusion

We proposed a block utilization-aware buffer replacement
scheme for mobile devices. It improves write performance
of mobile NAND flash storage by minimizing the frag-
mentation and it also maintains pages in recency order for
high cache hit ratio. Our experimental results clearly show
that the proposed scheme outperforms the state-of-the-art
scheme by up to 48% on real microSD cards.

References

[1] “Gartner.” http://www.gartner.com/newsroom/id/1862714

[2] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for
smartphones,” Proc. USENIX FAST’12, pp.209-222, 2012.

[3] S.Y. Park, D. Jung, J.U. Kang, J.S. Kim, and J. Lee, “CFLRU: A
replacement algorithm for flash memory,” Proc. ACM CASES’06,
pp.234-241, 2006.

[4] H.Jo,J.U. Kang, S.Y. Park, J.S. Kim, and J. Lee, “FAB: Flash-aware
buffer management policy for portable media players,” IEEE Trans.

LETTER

2513
Consum. Electron., vol.52, no.2, pp.485-493, May 2006. cache replacement scheme for mobile flash storage?,” Proc. ACM

[5] H. Kim and S. Ahn, “BPLRU: A buffer management scheme for im- SIGMETRICS’ 12, pp.235-246, 2012.
proving random writes in flash storage,” Proc. USENIX FAST 08, [7] C. Min, K. Kim, H. Cho, S.W. Lee, and Y.I. Eom, “SFS: Ran-
pp-239-252, 2008. dom write considered harmful in solid state drives,” Proc. USENIX

[6] H. Kim, M. Ryu, and U. Ramachandran, “What is a good buffer FAST’ 12, pp.139-154, 2012.

