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Abstract—One of the main changes in the current Linux is that
the Linux thread model is transferred from an existing thread
model to Native POSIX Thread Library (NPTL) for scalability
and high performance. Each user-space thread is implemented as
a corresponding kernel thread for fast creation and termination;
1:1 mapping model. Multiple threads in a single process can make
better use of multiple processor cores. Since a user-level thread is
implemented as a corresponding kernel thread, it is individually
schedulable and manageable. Each thread in a multi-processor
system will be able to run simultaneously in different CPU.

NPTL in Linux 2.6 improves scalability and performance
of server and desktop over Linux 2.4. But, it is inadequate
on embedded systems such as mobile phone and DTV, since
embedded systems have limited physical resources including CPU
clock-speed and memory capacity.

In this paper, we introduce a lightweight thread framework
to enhance NPTL on GLIBC/EGLIBC for embedded devices.
Our solution consists of (1) stack management to reduce mem-
ory footprint, (2) thread scheduling to improve responsiveness,
and (3) developer support for debugging and profiling. These
approaches provide a cost effective development opportunity to
the embedded developers of commercial mobile devices.

Index Terms—Lightweight process (LWP); Thread model;
Thread scheduling; Thread stack; Thread naming

I. INTRODUCTION

Most embedded systems such as mobile phone, camcorder,
and digital TV (DTV) have been designed for specific pur-
poses. As customers expectation on embedded devices gets
higher, manufacturers provide richer functionalities to raise
their competiveness. One of essential software techniques to
provide richer functionalities is supporting more number of
concurrent threads. The number of concurrent threads running
on recently released embedded devices such as camcorder and
mobile phone is ranging from 200 to 700.

Moreover, since many embedded devices recently released
allow a user to download applications from app-store directly
and install them after purchasing, the number of concurrent
threads or processes is going to be larger. Thus, supporting
larger number of concurrent threads and processes in a cost
effective manner is critically important. [1]

Obvious solution to support more concurrent threads is to
use a faster CPU and larger memory. However, it increases
manufacturing cost and potentially decreases the competive-
ness of product in the consumer market. Linux kernel adopts
Native POSIX Thread Library (NPTL) for multiple thread
support from version 2.6. NPTL is specially designed for

scalability and performance by using 1:1 mapping between
user level thread and kernel thread. But, since it is designed
for servers and desktops, there are impedance mismatch to
embedded systems with limited CPU and memory.

Mobile embedded systems provide limited physical re-
sources due to low power management and cost competitive-
ness. Moreover, a swap device to overcome physical memory
shortage is not supported in most embedded environments.
Therefore, application developers should obey good thread
programming styles and find an optimal stack size for threads
to implement efficient applications. In this way, we can im-
plement an efficient and economical system without additional
hardware support.

In this paper, we introduced optimized NPTL framework for
resource constraint mobile devices. Our solution consists of
(1) stack management to reduce memory footprint, (2) thread
scheduling to improve responsiveness, and (3) developer sup-
port for debugging and profiling.

The rest of this paper is organized as follows. Section
II describes the design and implementation of the proposed
schemes. Section III shows the evaluation results of the
schemes. Related work is described in Section IV. Finally, in
Section V, we conclude the paper.

II. DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation
of our proposed schemes. Figure 1 shows the overall archi-
tecture of the optimized lightweight thread framework. We
extend NPTL framework by adding gray colored components
in Figure 1. When a user-space thread is created, the thread
naming component monitors a newly created thread to find
out the purpose of each thread for optimization and debug
support and fixing bugs. The stack management component
allocates suitable stack size [2] for each thread to minimize
memory footprint. The thread profiling component provides
the profiling information including stack size, guard size,
scheduling priority, and time gap to optimize boot-time and
resource usage. Finally, the thread scheduling component con-
trols dynamic scheduling of threads to reduce user-perceived
latency by using our proposed Task scheduling importance
hierarchy.
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Fig. 1. Overall architecture of the system

A. Stack management

One main reason of a segmentation fault caused by user-
space thread libraries is too low memory allocation. If we
try to allocate too much memory, the operating system also
consumes too much memory, and thus it leads to segmentation
fault error. In many cases, we can avoid the segmentation
fault error by adjusting the stack to suitable size. Except for
expansion of physical memory and using swap space, there
are two software approaches to adjust the stack size:

• Changing system wide default stack size by using
ulimit command which is usually incorporated with
booting process: We have to decide the suitable stack size
of the embedded system, which wants to be selected as
a default stack size value for all threads that are created
in the specified embedded system. Through it, we can
manage the policy consistently that adjusts the default
stack size of the thread at the middleware level. But, this
approach has the one problem that can not manage a
suitable stack size of each thread in detail.

• Specifying stack size of an individual thread by using
POSIX API (pthread_attr_): Although, this ap-
proach controls each thread by adjusting manually this
POSIX API to each thread, we have the one issue that can
not still manage a lot of user-space threads automatically
and effectively.

To solve the unresolved issues of above two software ap-
proaches, we propose an appropriate stack size policy using

the stack management component to manage all user-space
threads automatically in the NPTL layer.

First of all, the existing NPTL creates a stack size of 8 MB
as a default of a user-space thread. But, this setting is suitable
for enterprise server environment. According to our profiling,
the required thread stack size for most embedded application
is less than 1 MB. Considering the minimum memory space of
the data structure for the creation of threads, the Linux-based
embedded system needs the stack size more than 16 KB per
a thread essentially.

We calculate a maximum stack size used by profiling all
user-space threads via the data structure of memory manage-
ment to decide the default stack size in the embedded system.
The application developer does not need to know anything
about a stack related knowledge, because the stack manage-
ment component automatically decides the stack size of newly
created user-space thread with pthread_create() library
call.

B. Thread naming
When a system crash is happened and we need to execute

performance optimization among user-space threads, figuring
out a essential role of a user-space thread is very important.
But, it is difficult that we try to measure a thread’s role with
only PIDs, because there are more than hundreds of user-space
threads are concurrently running in the modern embedded
systems.

It is possible to distinguish the main role of relevant child
threads by using the name of the thread function set as the
third parameter from pthread_create().

Otherwise, the application developer only gets a unique
value of each thread with Thread Local Storage (TLS) [3] that
is supported by CPU and cross-compiler. This value is used
for the purpose of identifying what thread runs a specified
function at some point. However, when hundreds of threads
call the same function by using the pthread_create()
function, it is not easy to know the unique purpose of each
thread that is executed by this method.

We extended interface which is called thread naming in
the user-space thread model based on NPTL to solve these
problems. It would be easy to understand the operation purpose
of all threads in the platform.

Because, many teams create many threads to develop a lot
of packages in case of a large scale project, it often causes
nonproductive activities to understand the operation purpose
of threads each team produces.

We implemented thread interface like
pthread_set_naming_np() library call and
pthread_get_naming_np() library call additionally for
the our embedded system. The thread naming component
supports the detailed information of all threads produced
by defining the role of the additional thread using the
pthread_set_naming_np() library call.

C. Thread profiling
We decide the optimal moment for booting the system by

profiling the time interval of thread creations between the front



and the back, and a CPU sharing of all threads created before
the GUI initial screen of the embedded platform appears.

When the CPU utilization of a specific moment is low
during the system booting, we can maximize the CPU uti-
lization and shorten the system booting time by parallelizing
independent functions of threads. And, the generation of
threads happened after a specific time from a specific thread’s
execution that analyzes CPU utilization of threads executed for
a long time in detail. If CPU utilization was not high, it means
there is room for optimization. Although CPU utilization is
high during the embedded system booting, and if the relevant
scheduling work could be possible after an initial screen
appears, it would be effective to run those threads after the
initial screen’ appearance.

D. Thread scheduling to reduce user waiting time

1) Extension of pthread_{set|get}_priority_np
interface: When Linux based on 3.0 version uses system call
and library call, it consists of a total of 140 priorities with
normal priority level using nice value from -20 to 19 and
real-time priority level from 1 ⇠ 99. Low numbers have high
priority in Linux kernel-space.

Normal priority is defined in the file of sched.c and Linux
schedule this tasks with O(1) scheduler or CFS scheduler
[4] depending on Linux version, after allocating one normal
priority between bitmap 100 and bitmap 139 about a nice value
between -20 and 19 by user-space application developers.

User-space real-time support and a few challenges for 100%
POSIX compliance were written in ”Native POSIX Threads
Library for Linux” [5] paper by Ulrich Drepper.

Infrastructure for POSIX compatible user-space real-time
support was improved by adding the features like Priority
Queuing, Robust Mutex(=RT MUTEX) [6] and Priority Inher-
itance [7] [8]. This means application developers can realize
the real-time thread programming in user-space. Table I below
shows the system call and library call for setting the scheduling
priority against the process/thread with normal priority and
real-time priority, respectively.

Scheduling PID Function Name interface
Priority TID (API) LinuxThread NPTL

Normal PID setpriority() getpid() gettid()nice()
(-20 to 19) TID setpriority() getpid() gettid()NON-ROOT nice()

Real-time PID sched setscheduler() getpid() gettid()sched setparam()
(1 to 99) TID pthread setschedprio() getpid() gettid()ROOT pthread setschedparam()

TABLE I
LINUXTHREAD VS. NPTL SCHEDULING SYSTEM CALL COMPARISON

The scheduling priority of an already-running normal pri-
ority thread can be changed by calling a system call like
setpriority(), nice().

In case of tasks having a real-time priority value, there are
possible values for scheduling policy like SCHED RR (real-
time round-robin policy), SCHED FIFO (real-time FIFO pol-
icy), SCHED OTHER (for regular non-real-time scheduling)
and so on. A parameter pointer showing the scheduling priority
in user-space can set the priority order ranging from 1 to 99
for the purpose of real-time scheduling policy. The priority of
threads using SCHED BATCH for ’batch’ style execution is
counted as 0.

Considering real-time property under embedded environ-
ment SCHED RR seems ideal, SCHED FIFO is more useful
to take effect of performance practically because a simple
policy is good for performance and effective management.

struct sched_param { int sched_priority; };

Because the use of gettid() depends on each CPU
architecture in Linux 3.0, system call number is different
among CPU architectures. We utilized gettid() system call
normally after defining manually like the method below be-
cause of non-implementation of gettid() in Linux system.

/* Appending gettid syscall in user-space */
#define gettid() syscall(__NR_gettid)

The unique number of thread executed in the related
function region to apply normal priority to threads that are
created as nice value. The gettid() function has to be
made using syscall(__NR_gettid). And then, the use
of gettid() function is available to utilize the gettid()
function by syscall(__NR_gettid) in the function of
relevant thread. We use gettid() instead of getpid()
in the NPTL thread model to find out this thread. Above
syscall() function returns kernel-space thread id that
mapped about user-space thread id that is running by including
unistd.h header file. The gettid() system call is defined
as below in the file of timer.c

/* gettid syscall details in Linux */
asmlinkage long sys_gettid(void){

return current->pid;
}

When you try to utilize the gettid() system call
using the above method, it is recommended to add the
thread library function including system calls by considering
the impact of embedded system’s performance because
of the cost of system calls. It is very useful to measure
the execution time, calls and errors for system calls of
thread library function to be added to know the cost of CPU
utilization. The call.S file of the ARM Architecture defines
sys_set_thread_area() as sys_ni_syscall
(224) and sys_get_thread_area as
sys_ni_syscall (225).

Maintenance of source code of a large scale project
can go on smoothly by not mixing many different func-
tions preferred by developer in embedded platform but
rather using a uniform common interface. We extended the
thread function of pthread_set_priority_np() or
pthread_get_priroity_np() additionally for the ap-
plication developer to get ID value of a thread easily.



2) Controlling CPU scheduling of user-space thread: By
increasing the speed of user’s application under embedded
system environment at specific time, users often want to
get shorten application’s waiting time. The support of these
mechanisms raises the flexibility of scheduling priority for
CPU utilization when threads need higher CPU utilization at
specific time. Effective throughput of applications is possible
by grouping thread applications based on the importance of
processing speed and response speed in embedded system
having limited CPU performance.

We need the thread dealing mechanism to realize the way
to give a suitable scheduling priority value of thread. So, we
newly designed Task scheduling importance hierarchy. Table II
below gives an explanation about task classification and task
meaning according to Task scheduling importance hierarchy
table. We can minimize user’s waiting time for embedded

Hierarchy of Descriptionsched priority
Busy Task Busy task means the threads in the top of screen
(Urgent) which interact with user or which occupy CPU

utilization under processing CPU.
Foreground Task Foreground task is thread that appear in the

(Normal) screenof user’s embedded device but doesn’t
have activity to be processed immediately.

Service Task Service task is middleware level component which
(Support) supply important functions for processing of

application and thread that occupies service.
Background Task Background task is thread that occupies activity

(Hidden) not visible to user.
Idle Task Idle task is thread that doesn’t occupy component

(Unlimited) of any active application in embedded system.

TABLE II
TASK SCHEDULING IMPORTANCE HIERARCHY

devices by adjusting the self thread’s scheduling priority at
specific time or by changing other thread’s normal priority at
run-time dynamically with pthread_setschedparam()
library call in Linux 3.0 based NPTL environment.

The pseudo code below shows the implementation of NPTL
library to control the scheduling priority arbitrarily or by force
for user-space threads based on normal priority that are created
on non-preemptive Linux 3.0.
__pthread_setschedparam(tid,policy,param)
{/* Normal(=dynamic) priority for O(1) / CFS */
struct pthread *pd=(struct pthread *)tid;
if (policy==SCHED_OTHER || policy==SCHED_BATCH){
/* Scheduling priority of thread */
int which = PRIO_PROCESS ;
/* Handling of SCHED_OTHER priority */
if ( param->sched_priority < -20 &&

param->sched_priority > 19 )
return nice_range_error;

if (nice_gap < 5 && policy == SCHED_BATCH)
cfs_aware_manager(nice_gap);/* for cfs env */

/* Getting LWP(thread id of kernel) to
* change scheduling priority about tid */

if (setpriority(which,unique_kernel_tid(),
param->sched_priority) ){

perror("setpriority() operaton error.\n");
result = errno;
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}}

As mentioned above, after improving scheduling-related
thread function of NPTL library, The way described below can
control the thread application’s scheduling actively to apply
different scheduling priority to many threads which are created
in one process in embedded system.

/* Aggressive Thread scheduling for
* urgent threads arbitrarily & by force */

struct sched_param schedp;
/* priority number of between -20 ˜ 19. */
int priority = -20 ;
memset(&schedp, 0, sizeof(schedp));
schedp.sched_priority = priority;
/* for controlling self thread */
pthread_setschedparam(pthread_self(),
SCHED_OTHER/SCHED_BATCH, &schedp)
/* for controlling another thread */
pthread_setschedparam(thread[i],
SCHED_OTHER/SCHED_BATCH, &schedp)

III. EVALUATION

We introduced several approaches for improving the cur-
rent NPTL thread model: a suitable thread stack size for
embedded environments, thread naming interface expansion
for optimization, supports of thread profiling and debugging
components to minimize the boot time of embedded platform,
a thread priority management method according to scheduling
importance of thread application, an arbitrary or enforced
thread scheduling control policy to speed up user application
processing.

From our experimental results, Figure 2 shows that we got
a fewer memory footprint via stack-size enhancement of the
existing user-space thread model on EGLIBC and GLIBC. The
’free’ word in Figure 2 means available virtual memory for
user-space applications. Actually, we saved virtual memory
resource innovatively against the existing NPTL model on our
embedded system that is running 273 threads.

As a result of that, We are keeping a suitable memory size
without extension of physical memory for the heavy-weight
threads based embedded platform according to the increased
the number of threads.

Table III shows the information like stack size, guard size,
priority value, and time-gap to optimize the system booting
time. Performance optimization can be possible by debugging
internal operation information of user-space functions and
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identifying naming information of relevant threads because
the thread number 168 is executed almost for 1 second in
Table III below. Additionally, readability can be improved by
understanding the detailed interactions among threads to ana-
lyze the purpose of creating, blocking, sleeping, and finishing
each thread.

Name TID StackSZ Priority Time Gap
(process) (thread) (kbyte) (nice) (msec)

Files Copy Extension 162 256 5 195
LifeCycle Controller 163 256 0 3

Micom Task 164 256 0 128
Event Dispatcher 165 256 5 115
Node Manager 166 256 5 2
Task Extension 167 256 5 2

Media API 168 256 5 977
Msg Event Handler 169 256 10 3

- - ... - -

TABLE III
THREAD NAMING AND PROFILING RESULT

We minimized user’s waiting time by controlling the
thread’s dynamic priority at run-time instantly with
pthread_setschedparam() library based on Task
scheduling importance hierarchy whenever users pushes a
menu to run a specific software. Figure 3 shows that the
improved NPTL thread model has better performance by
reducing user’s waiting time from 0.80 seconds to 0.35
seconds on CFS scheduler in our experiments.

IV. RELATED WORK

The existing NPTL library by Ulrich Drepper [5] is mainly
designed for scalability and performance on enterprise server
environment.

Wheeler [9] proposed the qthread API to solve problems
that must be addressed because massive parallelism is to
be popularized in NPTL thread model. It provides basic
lightweight thread control and synchronization primitives in
a way that is portable to existing highly parallel architectures.
But, this approach is also designed for server environment
only.

There are “NPTL Stabilization Project” [10] and “Native
POSIX Threads Library Support for uClibc” [11] for utilizing
NPTL on embedded systems. “NPTL Stabilization Project”
does not describe optimization for a lightweight embedded
mobile environment. “Native POSIX Threads Library Support
for uClibc” described a small memory footprint, but he does
not consider scheduling, memory, and productivity syntheti-
cally like this paper.

This paper tackles these issues and proposes many ways of
achieving the improvements.

V. CONCLUSION

The property of embedded system environment has limited
physical condition like low CPU clock speed and small
memory size. Therefore, the existing embedded systems using
NPTL need to be improved by operating lightly and speedily
with the best technical methods.

Our results confirm that the existing NPTL thread model
in Linux based on O(1)/CFS scheduler can be utilized for
embedded system through several improvement features with
both GLIBC and EGLIBC. We reduce user’s waiting time from
0.80 seconds to 0.35 seconds without any segmentation fault
errors according to our solutions that consists of (1) stack
management to reduce memory footprint, (2) thread schedul-
ing to improve responsiveness, and (3) developer support for
debugging and profiling. Our contributions provide a cost
effective development opportunity for embedded developers
to start developing the thread models for embedded systems
through existing open sources like Linux.
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