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Abstract — In the home cloud environment, the storage 

performance of home cloud servers, which govern connected 
devices and provide resources with virtualization features, is 
critical to improve the end-user experience. To improve the 
storage performance of virtualized home cloud servers in a 
cost-effective manner, caching schemes using flash-based 
solid state drives (SSD) have been widely studied. Although 
previous studies successfully narrow the speed gap between 
memory and hard disk drives, they only focused on how to 
manage the cache space, but were less interested in how to 
use the cache space efficiently taking into account the 
characteristics of flash-based SSD. Moreover, SSD caching 
is used as a read-only cache due to two well-known 
limitations of SSD: slow write and limited lifespan. Since 
storage access in virtual machines is performed in a more 
complex and costly manner, the limitations of SSD affect 
more significantly the storage performance. This paper 
proposes a novel SSD caching scheme and virtual disk 
image format, named sequential virtual disk (SVD), for 
achieving high-performance home cloud environments. The 
proposed techniques are based on the workload 
characteristics, in which synchronous random writes 
dominate, while taking into consideration the characteristics 
of flash memory and storage stack of the virtualized systems. 
Unlike previous studies, SSD is used as a read-write cache 
in the proposed caching scheme to effectively mitigate the 
performance degradation of synchronous random writes. 
The prototype was evaluated with some realistic workloads, 
through which the developed scheme was shown to allow 
improvement of the storage access performance by 21% to 
112%, with reduction in the number of erasures on SSD by 
about 56% on average.1 
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I. INTRODUCTION 

Virtualization is restrictively employed for personal 
applications, but has been widely used in many enterprise fields 
in the past few years. However, with the advent of the IoT 
(Internet-of-Things) era, recent trends show that some 
appliances such as smart TVs and home gateways are expected 
to evolve into home cloud servers [1], [2]. Cloud computing is a 
type of service that provides computing resources to customers 
on demand through virtualization technology. By accessing a 
cloud computing service, customers can use high-performance 
computing resources without buying a new computer. Applying 
the same idea to the home environment, home cloud servers 
govern all connected devices and provide them with computing 
resources. Therefore, users and devices can run many 
applications using those resources. 

Despite valuable functionalities of virtualization such as 
multiplexing and fair management of physical resources, one of 
its major drawbacks is performance degradation due to 
virtualization latency. Constant research efforts have brought 
the performance of processors and memories in virtualized 
systems to nearly the same level as in bare-metal systems, but, 
unfortunately, storage systems affect the performance of 
applications in unanticipated ways. Kim et al. [3] also figured 
out that storage performance is important for end-user 
experience since many applications have several functionalities 
that depend on storage. For example, the synchronous interface 
in databases, which is generally used for ease of development 
for web caching and data indexing, incurs massive random write 
traffics with plenty of force-unit-access (FUA) operations. 
These synchronous operations significantly degrade the 
performance of applications running on the home cloud server 
since virtual storage is accessed in a more costly and complex 
manner than physical access. Therefore, improving the 
performance of storage system in the virtualized environment 
can expedite applications of home cloud servers. 

Flash-based solid-state drives (SSD) appeared in the last 
several years, outperforming magnetic hard disk drives (HDD) 
in several aspects. They have smaller thermal footprints that 
allow lower power consumption, with several orders of 
magnitude lower latency and higher throughput, which have 
broadened the market share. Though flash-based SSD is roughly 
20 times faster than HDD, it is not an affordable option for the 
replacement of storage in all computer systems, since SSD is 
currently about 10 times more expensive than HDD. Instead of 
using SSD as persistent storage, many conventional systems [4]-
[6] have adopted it as a cache to fill the gap between DRAM 
and HDD. Since SSD caches can be applied selectively for 
performance-critical systems and the presence of the cache is 
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completely transparent to the applications, this provides a cost-
effective way to take advantage of SSD. 

To increase the productivity of virtualized systems and 
improve the performance of each virtual machine (VM) in the 
system, SSD caching for virtualized environments has been 
widely studied [7], [8]. Although previous research resulted in 
virtualized systems that can successfully manage cache space 
along with multiple VMs, such studies lacked efforts to ensure 
efficient utilization of the cache space. The unique 
characteristics of the flash memory should be accounted for, 
in order to make SSD caching a more fascinating scheme for 
I/O acceleration. Kim et al. [9] pointed out the differences 
between flash-based and DRAM-based caching, and 
suggested a flash-conscious cache population scheme. 
Moreover, due to the negative characteristics of writes in flash 
memory, typical SSD caching [7], [10] is unsuitable for write-
most workloads. However, since many realistic workloads 
involve random write patterns, mitigating the effect is 
important to implement effective SSD caching system. 

This paper demonstrates how to effectively leverage SSD 
caching in virtualized environments. The goal of this work 
was to ensure that workloads incurring synchronous random 
writes, as well as read-most workloads, can benefit from SSD 
caching by addressing the limitations of flash memory. In 
order to cache those workloads in SSD, reducing the number 
of random writes is important since it is about ten-fold slower 
than the sequential write and can cause massive internal 
fragmentation. The fragmentation increases garbage collection 
costs inside the SSD by incurring more block erases and thus 
drastically reduces the lifetime of the SSD. The problem of 
random writes can be addressed by transforming them to the 
sequential writes similar to the log-structured file system [11]. 
This paper applies the similar concept to the virtual disk layer 
(VDL). In a virtualized environment, the VDL is a crucial 
component that determines the write patterns of each VM 
since it provides mapping between the virtual disk in the VM 
and image file in the host. To this end, this paper proposes a 
novel virtual disk image format, sequential virtual disk (SVD), 
which fully utilizes the SSD sequentially. Previous version of 
this work [12] only focused on how to utilize SSD space 
efficiently, but this paper includes schemes for management of 
the cache space. SVD with SSD caching mitigates the effect 
of storage on the application performance in virtualized 
systems, thereby improving the overall performance of the 
home cloud server.  

The rest of the paper is organized as follows. Section II 
examines the characteristics of flash memory and I/O path in 
virtualized systems. Section III presents the design and 
implementation of SSD caching in detail. The evaluation 
results are presented in Section IV. Finally, Section V 
concludes this paper. 

II. BACKGROUND AND RELATED WORK 

To help understand the design of SSD caching for 
improving storage performance in virtualized home cloud 
servers, this section will provide an overview of storage I/O 
path in virtualized systems and the characteristics of flash-
based solid state drives. 

A. Storage Access in the Virtualized Environment 

In native environment, the OS kernel simply accesses the 
storage to process requests from applications as shown in Fig. 
1(a). On the contrary, storage in virtualized environment must 
be accessed through more complex and costly paths than 
native machines as shown as Fig. 1(b). The OS kernel of 
virtual machines cannot access the physical hardware directly. 
Instead, the hypervisor captures the I/O request and processes 
it by software emulation. Emulation is the most traditional and 
straightforward method by which the hypervisor mimics 
common storage interfaces such as E-IDE or SCSI. Although 
there is no need to modify the guest OS or to install any 
special device drivers on the guest machine, emulation cost is 
very high because the hypervisor must process every hardware 
command by software emulation, and moreover, each 
command is delivered by costly mode switches between the 
guest and host. 

 

 
Fig. 1. Comparison of storage I/O paths in virtual machine and native 
machine 

 
Recently, hardware features [13], [14] supporting direct 

assignment have been introduced to process the I/O request 
from VMs without the intervention of hypervisor. Since direct 
assignment allows the VM to directly access the physical 
device, it can improve storage performance to nearly bare-
metal levels. Despite the performance advantages, direct 
assignment has some problems: legacy storage devices must 
be replaced with new ones that provide hardware-assisted 
virtualization features, making the cost relatively high; the 
hypervisor cannot provide any abstraction or management for 
the underlying hardware, and therefore, VM can only use 
entire disk partitions instead of disk images that can provide 
snapshots, differencing, and encryption; absence of hardware 
abstraction also makes VM migration difficult and the 
destination machine should be equipped and configured 
identically to the source machine. For these reasons, many 
hypervisors still use software-based approaches such as the 
para-virtualized device drivers [15]-[17]. Though these drivers 
can reduce the number of interventions of the hypervisor by 
coalescing several I/O commands, storage access using para-
virtualized device drivers is still slower than native 
environments because the context switch remains a major 
source of virtualization overhead. Since many applications 
running on the home cloud server depend on the performance 
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of its underlying storage, it is important to mitigate the 
virtualization overhead.  

B. Flash Memory and SSD Caching 

NAND flash is most commonly used as a memory 
component in SSD. It is a purely electronic device, unlike 
magnetic disks with mechanical moving parts to seek sectors. 
Though flash memory can provide uniform random access 
speed, it has two well-known limitations: erase-before-write 
and relatively small write endurance. In addition, the read and 
write speed of flash memory are asymmetric; it takes more 
time to write (or inject charge into) a flash cell than to read the 
status from a cell. Moreover, random write is typically about 7 
times slower than sequential write, which also exacerbates the 
limitations of flash memory since it can cause excessive 
internal fragmentation. Increase in fragmentation results in 
frequent garbage collection inside the SSD, which incurs more 
block erases, and thus drastically reduces the lifespan of the 
SSD. To extend their capacity, modern SSDs have been 
equipped with multi-level cell (MLC) or even tri-level cell 
(TLC) flash memory, which have a tenth and a hundredth of 
the endurance compared to single-level cell (SLC), 
respectively. Consequently, they makes fragmentation more 
harmful to the life span of the SSD. 

Many studies on the software stack from file systems [11] 
to flash translation layers (FTL) [18], [19] have been 
performed to mitigate the limitations of flash memory by 
transforming the access pattern, by which data written 
randomly is stored sequentially in the SSD. However, since 
the process of storage access in virtualized system is more 
complex than in native system, the entire access path from the 
VM to the storage must be examined again. Most VMs 
generally run unmodified OS or applications for ease of use 
and to ensure compatibility. Therefore, it is difficult to deal 
with the storage access patterns in the VM and thus they 
should be managed on the host-side. 

 

 
Fig. 2. Effect of virtual disk layer to the storage access patterns 

 
Though there are many layers on which the SSD cache can 

be located on the host-side, S-CAVE [7] pointed out that the 
hypervisor is the most appropriate layer because it is the place 
where all I/O requests are sent from VM with information 
about the request including data size and offset. Specifically, 
virtual disk layer in the hypervisor transforms the requested 
sector of the virtual disk to the offset on the image file along 
with the corresponding virtual disk image format. For this 
reason, VDL has the greatest effect on the storage access 
patterns in the host as shown in Fig. 2. Although the random 

access pattern can be transformed to the sequential one in the 
storage stack of the host, the throughput and latency of the 
transformed access might be worse than those of the original 
sequential access due to the semantic gap between each layer. 
Gecko [20] also showed that poor management of the VDL 
significantly affects the storage access patterns, even if the 
patterns of the VM are sequential, because they may be mixed 
up by the VDL. Therefore, the VDL is chosen for placing 
SSD cache in order to prevent that the randomized storage 
access patterns degrade the effect of SSD caching. 

III. DESIGN AND IMPLEMENTATION 

 

 
Fig. 3. The overall architecture and main components of the SSD caching 
system 

 
Fig. 3 shows the overall architecture of the proposed 

caching system in the home cloud server. It mainly consists of 
two components: sequential virtual disk and cache 
management. Each component is designed to take account of 
the structure of the virtualized systems and characteristics of 
flash-based SSD, respectively. The design aims to provide the 
VM with high-performance storage in a cost-effective way, 
using only a cheap and small-sized SSD. To this end, this 
paper mainly addresses the following technical challenges: 

 
 Fully sequentially utilizing the SSD. The system must 

be able to cache data into the SSD, even if it is randomly 
written by the VM, without harming the performance or 
lifetime of SSD. 
 Efficient management of cache space. Since the unit of 

operation on flash memory varies (i.e., read/write by 
pages and erase by blocks), this must be considered by 
the system to allow efficient management of cache space. 
 Low system overhead. SSD caching can obviously 

benefit storage I/O performance, but it can also harm the 
overall home cloud server performance, which can annoy 
end-users if the operational cost is too high. 

 
In the rest of this section, the rationale behind the design 

decisions and key techniques of the proposed scheme will be 
described in detail. 

A. Sequential Virtual Disk 

Sequential virtual disk is a novel virtual disk image format 
for supporting the proposed SSD caching system. It maps the 
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virtual disk of VM to the image file by using a mapping 
method similar to QCOW, except that hot data or synchronous 
write data can be stored into the SSD cache. QCOW maintains 
two-level mapping tables to translate a sector number and an 
offset of the virtual disk into an offset of the image file. In 
SVD, exploiting two-level translation, the first-level table 
represents the chunk index and the second-level table 
represents the page index. Moreover, SVD supplements a flag 
to the second-level table, which represent whether data is in 
the image file or SSD cache. It normally passes the request to 
the HDD, and gathers information about the request. If the 
request is identified as a read for hot data or synchronous 
write, the data is cached on the SSD. More details about the 
caching scheme will be discussed in Section III-C. 

When a new cache space is allocated, the information in the 
request, including sector number and offset of the virtual disk, 
is translated to the chunk index and page index of the SSD 
cache. The current design stores the mapping table in DRAM, 
where it may be vulnerable to sudden power failure of the VM 
server, though power failure rarely happens in real situations. 
In future systems, this problem can be easily addressed by 
adopting a small amount of NVRAM for storing the table. 

B. Caching on Virtual Disk Layer 

In order to efficiently cache write data as well as read data, 
it is important to mitigate the effect of writes, especially 
random writes, which are more harmful to SSDs. Since 
populating read data is also associated with the write on the 
SSD cache, the limitations of SSD for writes must be 
addressed. Many studies [11], [18], [19] already showed that 
random writes can be transformed into sequential ones. This 
idea is applied to the VDL to use the SSD cache in a fully 
sequential manner. The VDL is the most suitable location for 
the SSD cache in virtualized systems. In a virtualized 
environment, a major benefit from caching the write data is 
improving the performance of the system and workloads 
running on it by exploiting the advantages of SSD, such as 
high throughput and low latency. VDL is the first place where 
an I/O request of the VM is processed, so if the host can 
complete the I/O request as quickly as possible, the VM can 
use more system resources. For example, when an application 
on a VM calls fsync() to flush the data written to the disk, this 
becomes a performance bottleneck of the application since the 
application must wait until the request is completely processed. 
Instead of passing the request to the image file in slow HDD 
storage through the host block I/O stack, the VM can resume 
the application right after caching the data into the SSD. 

C. Cache Space Management 

In typical virtualized systems, the cache space is shared 
among the VMs, and the cache manager distributes the entire 
cache space to each VM. To maximize the utilization of the 
cache space, existing caching systems [7], [8] monitor the I/O 
requests from VMs and make an effort to precisely predict the 
cache demand of each VM. In the proposed scheme, the cache 
space is allocated sequentially without pre-partitioning the 
read and write space to allow efficient management of the 
entire cache space. Instead of distributing the entire cache 
space to VMs, it is partitioned into chunks, whose size is the 

same as a block of the flash memory, and its space allocation 
is performed in the unit of chunks for each VM’s request. 
Since the size of chunk is equal to the unit of the erase 
operation, the cache space can be efficiently managed with the 
flash-conscious eviction scheme, which will be minutely 
discussed in Section III-D. After the chunk is allocated to a 
VM, it is divided by the page size of the flash memory, and 
each page is consumed sequentially for each update on the 
cached page, preventing fragmentation on the SSD, which 
may be incurred by in-place updates. With this method, 
although massive amounts of small writes may waste space in 
the SSD, such situation would rarely occur because multiple 
writes are usually coalesced at the page cache layer in the VM. 
 

 
Fig. 4. An example of the caching and management process 

 
To further understand the management process of the cache 

space to achieve sequential allocation, Fig. 4 represents an 
example of the caching and management process of the 
proposed scheme. When a VM requests to modify the page A 
cached in the SSD, the request of modification is performed 
directly in the disk image instead of updating the cached page. 
Simultaneously, the page A in the cache is invalidated and 
mapping for the page is redirected to the disk image. In cases 
where successive updates for the page B in the write cache are 
requested, the new pages B+ and B++ with modified data are 
allocated for each update. 

D. Data Placement and Eviction 

There are two cases in which data is cached on the SSD: hot 
data to the read cache and data for synchronous writes to the 
write cache. In order to determine the hotness of data or 
identify the type of writes, I/O requests of the VMs should be 
monitored. Information about the cache demand can also be 
used for eviction. There are a few options for monitoring 
storage access at different levels of system hierarchies. By 
exploiting the virtualization hierarchy, SVD can easily capture 
the access requests without costly monitoring overhead since 
all access requests in a VM are processed through the VDL. 

Populating all read accesses to the cache may increase the 
number of pages that are never accessed until they are evicted. 
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Also, frequent population and eviction of the read cache may 
harm the lifespan of the SSD, and cause the caching system to 
suffer from management overhead. In order to mitigate these 
problems, the cache manager lazily populates data into the 
read cache. A variation of the LRU-like list is maintained as in 
the scheme by Kim et al. [9], and only the data classified as 
hot is promoted into the read cache. Though previous version 
of this work [12] adopts CLOCK algorithm [21] due to its low 
operation cost, other LRU-like lists [22], [23] which consider 
the characteristics for flash-based SSD can also be applied to 
the cache manager for more optimization such as reducing the 
number of write operations to flash memory and preventing 
seriously degradation of the hit ratio. Meanwhile, the write 
cache operates in the write-through mode. Along with 
resuming the execution of the VM right after the I/O request is 
cached, the I/O request is performed continuously in the 
background. This helps maintain the consistency of the image 
file, and thus the VM can easily be migrated without 
validating the image.  

If there is no available chunk in the cache, the cache 
manager looks up the VM with the least demand and evicts all 
write cache chunks that are fully consumed. If there is no fully 
used write cache chunk, the cache manager firstly selects 
victim chunks among the write cache chunks, so as to 
maintain the read cache for a long time. If the ratio of the read 
cache exceeds the threshold (75% in the current prototype), 
chunks in the read cache can also be selected for victims. 
Eviction can be performed easily since allocating the cache 
space is performed by unit of chunks, each of which has the 
same size as that of the block. Evicted chunks are simply 
marked by the TRIM command, after which they are 
completely wiped internally for later use. It is also possible to 
use the cache utilization statistics to eagerly reclaim cache 
space for reduction of the on-time eviction overhead.  

IV. EVALUATION 

A. Experimental Setup 

1) Software and Hardware Configurations 
To validate the proposed design for improving storage 

performance in the home cloud server, the caching system was 
implemented with QEMU [24] (version 1.5.0) and Linux 
KVM [25] (version 3.12.10). Though the complete caching 
system should include a scheme for managing and distributing 
the cache space, the current prototype mainly focuses on 
identifying the effects of sequential allocation on the SSD as a 
write cache. All experiments were performed on a tiny PC 
equipped with a low-power processor (2.1 GHz dual-core) 
supporting the hardware-assisted virtualization features and 
8GB of DRAM. Each VM was configured to run a Linux-
based mobile platform for smartphones, tablets, or other home 
devices in order to make the environment similar to real-world 
home cloud servers. 

2) Target SSDs 
Currently, the spectrum of SSDs available on the market is 

very wide in terms of price and performance. In order to cover 
all ranges of SSD, two very different SSDs were selected as 
shown in TABLE 1. The two SSDs are both based on MLC, 

but one is a high-end SSD (SSD-H) connected with a PCI-E 
bus while the other is a low-end SSD (SSD-L) connected with 
a typical S-ATA3 bus. With the SSD-H, the peak storage 
performance of caching system could be determined. On the 
other hand, the average gain of the storage performance was 
estimated for cost-effective SSD caching with the SSD-L. 

 
TABLE I 

SPECIFICATION DATA OF THE SSD USED IN EXPERIMENTS  

 SSD-H SSD-L 

Capacity 256GB 32GB 
Interface PCI-E SATA3 
Flash Memory MLC MLC 
Sequential Reads (MB/s) 515.3 349.0 
Random 4KB Reads (MB/s) 34.5 20.3 
Sequential Writes (MB/s) 450.7 134.3 
Random 4KB Writes (MB/s) 64.1 14.1 

 
3) Workloads 

To study the impact of the SSD caching system on 
synchronous random write workloads, a synthetic workload 
with uniform random write patterns and real-world workload 
of the light-weight database was employed. For the synthetic 
workload, the file system level trace was collected while 
running RL Benchmark, and the trace for the real-world 
workload is collected while running Web Benchmark. Since 
the main area of interest was the maximum write performance, 
write requests in the workloads were replayed as fast as 
possible in a single thread, and the throughput was measured 
at the application level. All benchmarks were run with 
sufficient memory, which was configured to enable all default 
caching and buffering options to place the workload in the 
real-world situation. 

B. Experimental results 

First, this section explores how much SSD caching can 
improve workload throughput. The experiments were 
performed with two configurations: using all disks as a 
persistent storage for storing the image file (Persistent 
storage); using SSD as a cache managed by the proposed 
scheme (Cache). The performance of the HDD was measured 
only as a persistent storage to provide a baseline. The 
experimental results for the synthetic workload and the real-
world workload are presented in Fig. 5 and Fig. 6, 
respectively.  

 

 
Fig. 5. Comparison of the throughput of synthetic workload 
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The results clearly showed that the SSDs were two to four 
times faster than the HDD when configured only as a 
persistent storage. However, the throughput of the SSD-H as a 
persistent storage was only 26% better than that of the SSD-L 
for the real-world workload, even though SSD-H has much 
higher throughput in its specification. This result is due to the 
virtualization overhead which harms the storage access 
patterns and limits the throughput by the costly I/O path. 
Although the difference in the throughput of two SSDs are 
90% for the synthetic workload, the performance of the SSD-
H is still restricted by virtualization. 

 

 
Fig. 6. Comparison of the throughput of real-world workload 

 
On the contrary, using of the SSD as a cache results in better 

performance than using it as a persistent storage: 21% (SSD-L) 
and 33% (SSD-H) better in the synthetic workload, and 24% 
(SSD-L) and 112% (SSD-H) better in the real-world workload. 
This improvement was achieved by finishing the I/O request in 
the SSD cache layer and immediately returning control to the 
VM. In addition, the caching system fully utilized the SSDs 
sequentially, thereby minimizing the garbage collection overhead 
in the SSD. In both cases, the results show that the real-world 
workload benefits are greater than the case of synthetic workload. 
This difference was due to severe access to the storage during the 
operational process of Web Benchmark for caching web pages in 
the local storage whereas RL Benchmark only accesses the local 
storage through the database. Web Benchmark accesses database 
to index the cached data while writing significant amount of 
cached web pages to the local storage. Since the database 
frequently triggers synchronization operations to retain 
consistency and the pattern is random, transformation to the 
sequential pattern and earlier return to the VM with SSD caching 
is a major source of improvement. 

 

 
Fig. 7. Comparison of throughput with SSD caching on various disk 
images 

To determine whether the various virtual disk image 
formats, including raw, qcow2, vmdk [17], and vdi [26], 
would result in performance differences, the same 
experiments were performed with the real-world workload for 
the various image formats using SSD as a cache. As shown in 
Fig. 7, since data caching is performed before converting the 
VM’s request to the request on the disk image file, the results 
were similar among the image formats tested. Exceptionally, 
the VM with raw image format performed better due to its 
potentially higher throughput, which was achieved by 
eliminating management functionalities such as migration, 
snapshot, and encryption. 

C. Improvements in the Lifetime of SSD 

The next experiment compared erase counts, which are 
representative of the garbage collection overhead and lifespan 
of the flash memory inside the SSD. The I/O trace issued by 
the file system was collected using blktrace while running the 
real-world workload. The trace was run on an FTL simulator, 
implemented with two FTL schemes – (a) FAST [19] as a 
representative hybrid FTL scheme, and (b) page-level FTL 
[27]. In both schemes, 32 GB NAND flash memory was 
configured with 4 KB pages, and 512 KB blocks.  

 

 
Fig. 8. Comparison of erase count with the different FTL algorithms 

 
Fig. 8 shows the erase counts in FAST and the page 

mapping, while the real-world workloads were processed by 
SVD with SSD caching. As can be expected from the 
improvement of the throughput, a significantly lower number 
of block erases occur with caching scheme. The erase counts 
are significantly higher for persistent storage, which manages 
the image file with overwrite file systems, than in the SSD 
caching. In total, using SSD as a persistent storage incurred 
2.2 times more block erases in FAST and 2.3 times more 
block erases in the page-level FTL. 

V. CONCLUSION 

This paper proposed a novel SSD caching system for 
improving storage performance while also improving the 
performance of applications in the home cloud server. 
Proposed SSD caching system effectively caches not only 
read operations but also write operations, which are generally 
unlikely to be cached in SSDs due to the characteristics of the 
flash storage. This performance improvements are achieved 
by fully utilizing the SSD sequentially. The experimental 
results demonstrated that our caching system can significantly 
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improve the performance of random writes by transforming 
them to sequential ones, consequently prolonging the lifespan 
of the SSD through reduction in the number of erasures. 
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