
Abstract— In this paper, we propose a novel SSD caching

scheme and virtual disk image format, named SVD (Sequential

Virtual Disk). Our proposed techniques are based on workload

characteristics in home cloud server, in which synchronous

random writes dominate. Unlike previous studies, we use SSD as

a read-write cache in order to effectively mitigate performance

degradation of synchronous random writes.

I. INTRODUCTION

Virtualization has been utilized restrictively for personal

purpose, whereas it has been widely used in many enterprise

fields in the past few years. However, as greeting an IoT

(Internet-of-Things) era, recent trends show that some

appliances such as smart TVs and home gateways are expected

to evolve into home cloud server [1], [2]. The home cloud

server governs all connected devices and provides them with

the computing resources through a virtualization technology.

Despite its valuable virtualization functionalities such as

multiplexing of physical resources and fair management of

them, one of the major concerns is the performance

degradation due to the virtualization latency. The constant

research efforts made performance of processor and memory

nearly bare-metal in virtualized systems, but, unfortunately,

storage system affects the performance of applications in

unanticipated ways [3]; especially, the synchronous interface

in SQLite, which is used for ease of development, incurs

massive random write traffics with plenty of force-unit-access

(FUA) operations. These synchronous operations more

significantly degrade performance of applications running on

the home cloud server since virtual storage is accessed in a

costly and complex way than the physical one. Therefore,

improving the performance of virtual storage can expedite

applications of the home cloud server.

SSD caching schemes have been widely studied and applied

to conventional systems as a cost-effective storage model to

bridge the speed gap between fast memory and slow disks.

Many previous studies [4], [5], however, used SSD just as a

read-only cache to reduce access time on read-most data. In

contrast, the write operation is unwilling to be cached in SSD

because NAND flash has two well-known limitations for the

write operation: erase-before-write and relatively small write

endurance. Nevertheless, the enormous writes induced by

frequent FUAs should be cached in order to reduce their

latency, which is critical to the performance of applications.

In this paper, we propose a novel SSD caching system

which can caches the write operations effectively as well as the

read operations by making up for the asymmetric I/O

characteristics of the NAND flash storage. Our approach

This research was supported by Next-Generation Information Computing Development

Program through the National Research Foundation of Korea (NRF) funded by the

Ministry of Science, ICT & Future Planning (2010-0020730)

mitigates the effect of the storage on the application

performance in virtualized systems, thereby improving the

overall performance of the home cloud server.

II. DESIGNS OF OUR SSD CACHING SYSTEM

Our SSD caching system is designed for improving the

performance of storage I/O in the home cloud server. Fig. 1

shows the overall architecture of the proposed system. In the

rest of this section, we will describe our design in detail

addressing the following technical challenges. The first is on

considering the NAND flash characteristics. Our system must

be able to cache the write operations in the SSD without

harming its performance or lifetime. The second is on

managing the cache efficiently. Our system must be adaptive

to reflect cache demands of each VM in order to fairly utilize

the cache space shared among the VMs. The third is on the

low overhead. SSD caching can obviously benefit storage I/O

performance, but it can harm the overall system performance if

its operational cost is too high.

A. Sequential Virtual Disk

In order to cache the write operations in SSD, reducing the

number of random writes is important since it is about ten-fold

slower than the sequential write and can cause excessive

internal fragmentation. The fragmentation increases garbage

collection cost inside SSD by incurring more block erases and

thus it also reduces the lifetime of the SSD drastically. The

problem of the random writes can be addressed by

transforming them to the sequential writes as like a log-

structured file system [6]. We adopt the same idea to the

virtual disk layer. In virtualized environment, the virtual disk

layer is a crucial component determining the write patterns of

each VM since it manages host file as a virtual disk and

provides mapping between them. Therefore, we propose a

Sequential Virtual Disk (SVD) image format that uses the SSD

fully sequentially.

The SVD uses a mapping method similar to QCOW [7],

except data can be stored into either the virtual disk image or

the SSD cache. Due to the space limitation, we focus only on

the use of the SSD, considering the I/O characteristic of the

NAND flash. The SVD partitions the SSD to chunks having

the same size as the block that is a unit of the erase operation,

 Effective SSD Caching for High-Performance Home Cloud Server1

Dongwoo Lee, Changwoo Min and Young Ik Eom

Sungkyunkwan University, Suwon, Korea

{lightof, multics69, yieom}@skku.edu

Virtual Disk Layer

Cache managementSequential virtual disk

I/O request I/O request I/O request
VM VM VM

Smart Phone Tablet Other devices

HDD SSD

Cache allocator

Cache replacementPage mapper

I/O info.I/O monitor

cold data read /
asynchronous write hot data read /

synchronous write

allocation & eviction
control

Fig. 1. Architecture of the proposed SSD caching system

2015 IEEE International Conference on Consumer Electronics (ICCE)

978-1-4799-7543-3/15/$31.00 ©2015 IEEE 152

and allocates them to the VMs sequentially. Each chunk is

divided by the page size of the SSD and each page is also

consumed sequentially when the I/O data needs to be cached.

As Fig. 2 shows, no page updates are happened in our system

in order to prevent fragmentation; the read cache only

invalidates the modified page instead of updating it, and the

write-cache allocates a new page for each successive update.

B. Cache Space Management

In a virtualized system, the cache space is shared among

VMs and the cache manager distributes it to each VM on

demand. To maximize the utilization of the cache space,

existing systems [4], [8] monitor the I/O requests of the VMs

and make an effort to predict the cache demand precisely. In

contrast, our caching system allocates the cache space

sequentially without partitioning to each VM. Information

about the cache demand is only required for eviction; if there

is no available chunk in the cache, cache manager selects a

victim chunk in the VM which has least demand. Not only we

can easily achieve the high cache space utilization without

costly monitoring, but it is also possible to use cache

utilization statistic to eagerly reclaim the cache space for

reducing on-time eviction overhead.

C. Data Placement & Eviction

Our system places two cases to the SSD cache: hot data to

the read cache and data for synchronous writes to the write

cache. In order to determine the hotness of data or identify the

type of writes, the I/O request of VMs should be monitored.

There are few options for monitoring the I/O at different levels

of hierarchy. By exploiting I/O virtualization hierarchy, our

system can easily capture the I/O requests without costly

monitoring since all I/O requests in the VM are processed

through the virtual disk layer.

 Eviction can be conducted more simply since our system

uses chunks, each of which has the same size as the unit of

erase operation. When the cache is full, cache manager first

evicts all fully-used chunks for write cache to maintain the

read cache for a long time. If the ratio of the read cache

exceeds a threshold (75% in our current prototype), chunks for

the read cache can also be evicted. In contrast with write-cache,

victims of the read cache are selected by cache replacement

algorithms, most of which are LRU and its variants. Though

our system adopts CLOCK [9] due to its low operational cost,

other algorithms can be applied for more optimization.

III. PERFORMANCE EVALUATION

To verify the proposed caching system, we implemented a

prototype using QEMU providing the virtual disk layer to

VMs on KVM in Linux. Our experimental environment is

configured by combining the 7500RPM 1TB HDD and high-

end 32GB SSD. We measured the performance of sequential

and random I/O ten times with same workloads in the VM with

three different configurations: storing data only to the HDD

with QCOW (HDD-QCOW), using the SSD as a primary

storage ignoring its space limitation (SSD-QCOW), and our

caching system (Caching-SVD). As Fig. 3 shows, our system

outperforms HDD-QCOW and attains approximately to SSD-

QCOW on 10th iteration case, though it initially cannot benefit

from the read performance due to the absence of locality.

Especially, in comparison with SSD-QCOW, ours significantly

improves performance of random writes by transforming them

to the sequential writes.

IV. CONCLUSION

This paper proposed a novel SSD caching system for

improving storage performance as also improving the

performance of applications in the home cloud server. Our

system effectively caches not only the read operations but also

the write operations, which are generally reluctant to be

cached in the SSD due to the characteristics of the flash

storage, by using the SSD fully sequentially. Experimental

result shows that our caching system can significantly improve

the performance of the random writes by transforming them to

the sequential ones.

REFERENCES

[1] M. R. Cabrer, R. P. D. Redondo, A. F. Vilas, J. J. Pazos Arias, and J. G. Duque,

“Controlling the smart home from TV,” IEEE Trans. Consum. Electron., Vol. 52, No. 2,

pp. 421-429, 2006.

[2] H. Park, I. Lee, T. Hwang, and N. Kim, “Architecture of home gateway for device

collaboration in extended home space,” IEEE Trans. Consum. Electron., Vol. 54, No. 4,

pp.1692-1697, 2008.

[3] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for smartphones,” ACM

Trans. Storage, Vol. 8, No. 4, Article. 14, 2012.

[4] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and L. Zhou, “S-CAVE: effective SSD

caching to improve virtual machine storage performance,” In PACT, pp.103-112, 2013.

[5] H. Jo, Y. Kwon, H. Kim, E. Seo, J. Lee, and S. Maeng, “SSD-HDD-hybrid virtual disk

in consolidated environments,” In Euro-Par, pp.375-384, 2010.

[6] C. Min, K. Kim, H. Cho, S. W. Lee, and Y. I. Eom, “SFS: random write considered

harmful in solid state drives,” In USENIX FAST, p.12, 2012.

[7] M. McLoughlin. (2008, Sep. 11) The QCOW2 Image Format [Online].

Available: https://people.gnome.org/~markmc/qcow-imageformat.html

[8] F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and D. Liu, “vCacheShare: Automated

Server Flash Cache Space Management in a Virtualization Environment,” In USENIX

ATC, pp.133-144, 2014.

[9] S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An Effective Improvement of the

CLOCK Replacement,” In USENIX ATC, pp.323-336, 2005.

0

50

100

150

200

250

300

1st iter. 10th iter. 1st iter. 10th iter. 1st iter. 10th iter.

HDD-QCOW SSD-QCOW Caching-SVD

T
h

ro
u

g
h

p
u

t
(M

B
/s

) Sequential Read

Sequential Write

Random Read

Random Write

Fig. 3. Comparison of I/O throughput in configurations of combining

virtual disk image format (QCOW, SVD) and underlying physical storage

(SSD, HDD)

VM 2
write-cache

…

A

…

B
B’
B”

…

chunk

…

… …

VM 1
read-cache

VM 1
write-cache

VM 2
write-cache

free page

used page
invalidated page

Virtual Disk Image To be reclaimed

A’

L1 Table
L2 Table Cached data is updated

Constant overwrites

Each chunk is sequentially allocated E
ac

h
 p

ag
e

is
 s

eq
u
en

ti
al

ly
 c

o
n
su

m
ed

SVD mapping table

The new chunk is allocated for VM2

Fig. 2. Overview of the caching process and management in SVD

2015 IEEE International Conference on Consumer Electronics (ICCE)

153

