
Design and Implementation of a Log-Structured
File System for Flash-Based Solid State Drives

Changwoo Min, Sang-Won Lee, and Young Ik Eom

Abstract—Even in modern SSDs, the disparity between random and sequential write bandwidth is more than 10-fold. Moreover, random
writes can shorten the limited lifespan of SSDs because they incur more NAND block erases per write. To overcome the problems of
random writes, we propose a new file system, SFS, for SSDs. SFS is similar to the traditional log-structured file system (LFS) in
that it transforms all random writes at the file system level to sequential ones at the SSD level, as a way to exploit the maximum write
bandwidth of the SSD. But, unlike the traditional LFS, which performs hot/cold data separation on segment cleaning, SFS takes a
new on writing data grouping strategy. When data blocks are to be written, SFS puts those with similar update likelihood into the same
segment for sharper bimodal distribution of segment utilization, and thus aimsatminimizing the inevitable segment cleaning overhead that
occurs in any log-structured file system. We have implemented a prototype SFS by modifying Linux-based NILFS2 and compared
it with three state-of-the-art file systems using several realistic workloads. Our experiments on SSDs show that SFS outperforms
LFS by up to 2.5 times in terms of throughput. In comparison to modern file systems, SFS drastically reduces the block erase count
inside SSDs by up to 23.3 times. Although SFS was targeted for SSDs, its data grouping on writing would also work well in HDDs.
To confirm this, we repeated the same set of experiments over HDDs, and found that SFS is quite promising in HDDs: although the slow
random reads in HDDs make SFS slightly less effective, SFS still outperforms LFS by 1.7 times.

Index Terms—Log-structured file systems, segment cleaning, random write, solid state drives, hard disk drives

1 INTRODUCTION

NAND flash memory based SSDs have been revolution-
izing the storage system. An SSD is a purely electronic

device with no mechanical parts, and thus can provide lower
access latencies, lower power consumption, lack of noise,
shock resistance, and potentially uniform random access
speed. However, there remain two serious problems limiting
wider deployment of SSDs: limited lifespan and relatively
poor random write performance. The limited lifespan of
SSDs remains a critical concern in reliability-sensitive envir-
onments, such as data centers [1]. Even worse, the ever-
increasing bit density for higher capacity in NAND flash
chips has resulted in a sharp drop in the number of
program/erase cycles from 10 K to 5 K for the last two years
[2]. Meanwhile, previous work [3], [4] shows that random
writes can cause internal fragmentation of SSDs and thus lead
to performance degradation by an order of magnitude. In
contrast to HDDs, the performance degradation in SSDs
caused by the fragmentation lasts for a while even after
random writes are stopped, because random writes cause
moredata pages inNANDflash blocks to be copied elsewhere
and erased. Therefore, the lifespan of SSDs can be drastically
reduced by random writes.

Not surprisingly, researchers have devoted much effort to
resolve these problems.Most of thework has been focused on

the flash translation layer (FTL)—an SSD firmware emulating
an HDD by hiding the complexity of NAND flash memory.
Some studies [5], [6] improved randomwrite performance by
providingmore efficient logical to physical addressmapping.
Meanwhile, other studies [7], [6] proposed a separation of
hot/cold data to improve random write performance. How-
ever, such under-the-hood optimizations are purely based on
logical block addresses (LBA) requested by afile system so that
they would become much less effective for the no-overwrite
file systems [8]–[10] inwhich everywrite to the samefile block
is always redirected to a new LBA. Several new database
storage schemes are proposed to improve random write
performance taking into account the performance character-
istics of SSDs [11], [12]. However, general applications cannot
benefit from such database specific optimizations.

In this paper, we propose a novel file system, SFS, that can
improve randomwrite performance and extend the lifetimeof
SSDs. Basically, SFS is very close to LFS [13]. LFS is known to
be verypromising in SSDbecause itwrites allmodifications to
storage sequentially in a log-like structure. Moreover, unlike
HDD, the fast uniform random read performance in SSD can
substantially mitigate the overhead of random reads in LFS.
However, the segment cleaning overhead in LFS can still
severely degrade the performance [14], [15] and shorten the
lifespan of SSD. This is because, at every segment cleaning, a
large number of pages need to be copied to secure a large
empty chunk for sequential writes. Although the excessive
cleaning overhead in LFS could be somewhat remedied by
careful victim selection, previous studies [16]–[19] have
shown that the cleaning overhead even using the improved
selection scheme is still high under large segment size. This
situation is problematic especiallywith SSD,wheremaximum
write performance can be sustained only by large segment

• C. Min, S.W. Lee, and Y.I. Eom are with the College of Information &
Communication Engineering, Sungkyunkwan University, Suwon,
Gyeonggi-do 440-746, Korea. E-mail: {multics69, swlee, yieom}@skku.edu.

Manuscript received 30Apr. 2012; revised 14 Feb. 2013; accepted 16 Apr. 2013.
Date of publication 23 Apr. 2013; date of current version 07 Aug. 2014.
Recommended for acceptance by P. McDaniel.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.97

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014 2215

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

size (32 MB in our experiments). To overcome this limitation
of LFS with SSD, we investigate how to take advantage of the
performance characteristics of SSD and the skewness in
patterns. To summarize, SFS can sustain the maximum write
bandwidth of SSD with large segment size while minimizing
the segment cleaning overhead.

This paper makes the following specific contributions:
We introduce the design principles for SSD-based file
systems. They should exploit the performance character-
istics of SSD and directly utilize file block level statistics.
In fact, the architectural differences between SSD and
HDD result in different performance characteristics for
each system. One interesting example is that, in SSD, the
additional overhead of random write disappears only
when the unit size of random write requests becomes a
multiple of a certain size. To this end, we take log-
structured approachwith a carefully selected segment size.
To reduce the segment cleaning overhead, we propose an
eager on writing data grouping scheme that classifies file
blocks according to their update likelihood and writes
those with similar update likelihoods into the same seg-
ment. The effectiveness of data grouping is determined by
the proper selection of grouping criteria. To determine the
grouping criteria, we propose an iterative segment quanti-
zation algorithm. We also propose cost-hotness policy for
victim segment selection. Our eager data grouping will
colocate frequently updated blocks in the same segment;
thus most blocks in that segment are expected to become
rapidly invalid. Consequently, the segment cleaner can
easily find a victim segment with few live blocks and thus
can minimize the overhead of moving the live blocks.
Using a number of realistic and synthetic workloads, we
show that SFS significantly outperforms LFS and state-of-
the-art file systems such as ext4 and btrfs. We also show
that SFS can extend the lifespan of SSD by drastically
reducing the number of NAND flash block erases. In
particular, while the random write performance of the
existing file systems is highly dependent on the random
write performance of SSD, SFS can achieve nearly maxi-
mum sequential write bandwidth of SSD for random
writes at the file system level. Therefore, SFS can provide
high performance even onmid-range or low-end SSDs as
long as their sequential write performance is comparable
to high-end SSDs.
Finally, thoughSFSwasdesignedmainly for SSDs, its key
techniques are agnostic to storage devices. To verify this,
we evaluate SFS onHDD.Our experimental results show
that SFS can also effectively improve the random write
performance of HDDs.

The rest of this paper is organized as follows. Section 2
overviews the characteristics of SSD and workloads.
Section 3 elaborates the design of SFS, and Section 4 shows
the evaluation. Related work is described in Section 5. In
Section 6, we conclude the paper.

2 BACKGROUND

2.1 Flash Memory and SSD Internals
NANDflashmemory is the basic building block of SSDs.Read
andwrite operations are performed at the granularity of a page
(e.g., 2 KB or 4 KB), and the erase operation is performed at the

granularity of a block (composed of 64–128 pages). NAND
flashmemory differs fromHDDs in several aspects: (1) asym-
metric speed of read and write operations, (2) no in-place
overwrite (i.e., block erase before write), and (3) limited
program/erase cycles—roughly 100 K for a single-level cell
(SLC) and roughly 5 K to 10 K for a multi-level cell (MLC).

A typical SSD is composed of host interface logic (SATA,
USB, and PCI Express), an array of NAND flash memories,
and an SSD controller. FTL, run by SSD controller, emulates
HDD by exposing a linear array of logical block addresses
(LBAs) to the host. To hide the unique characteristics of flash
memory, it carries out threemain functions [20]: (1)managing
amapping table fromLBAs to physical block addresses (PBAs),
(2) performing garbage collection to recycle invalidated physi-
cal pages, and (3)wear-leveling to wear out flash blocks evenly
to extend the lifespan of SSD.

Much research has been carried out on FTL to improve the
performance and extend the lifetime of SSD [21], [5]–[7]. In a
block-level FTL scheme, a logical block number is translated to
a physical block number and the logical page offset within a
block is fixed. Due to the coarse-grained mapping, the map-
ping table is small enough to be kept in memory entirely.
Unfortunately, this results in higher garbage collection over-
head. In contrast, since a page-level FTL scheme manages a
fine-grained page-level mapping table, it results in lower
garbage collection overhead. However, such fine-grained
mapping requires a large mapping table on RAM. To over-
come such technical difficulties, hybrid FTL schemes [21], [5],
[7] extend the block-level FTL. These schemes logically parti-
tion flash blocks into data blocks and log blocks. The majority of
data blocks are mapped using block level mapping to reduce
the requiredRAMsize and logblocks aremappedusingpage-
level mapping to reduce the garbage collection overhead.
Similarly, DFTL [6] extends the page-level mapping by selec-
tively caching page-level mapping table entries on RAM.

2.2 Imbalance between Random and Sequential
Write Performance in SSDs

Write performance in SSDs is highlyworkloaddependent and
is eventually limited by the garbage collection performance of
FTL. Previous work [3], [4], [12], [22], [23] has reported that
random write performance drops by more than an order of
magnitude after extensive randomupdates and returns to the
initial high performance only after extensive sequential
writes. This is because random writes increase the garbage
collection overhead in FTL. In a hybrid FTL, random writes
increase the associativity between log blocks and data blocks,
and incur the costly full merge [5]. In page-level FTL, as it tends
to fragment blocks evenly, garbage collection has large copy-
ing overhead [24].

To improve garbage collection performance, SSD com-
bines several blocks striped over multiple NAND flash mem-
ories into a clustered block [25]. The purpose is to erasemultiple
physical blocks in parallel. If all write requests are aligned in
multiples of the clustered block size and their sizes are also
multiples of the clustered block size, the random write
updates and invalidates a clustered block as a whole. There-
fore, a switch merge [21] that has the lowest overhead occurs in
the hybrid FTLs. Similarly, in the page-level FTLs, empty
blocks with no live pages are selected as victims for garbage
collection. This results in that the random write performance

2216 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

converges with the sequential write performance. To verify
this, we measured sequential write and random write
throughput on three different SSDs in Table 1, ranging from
a high-end SLC SSD (SSD-H) to a low-endMLCUSBmemory
stick (SSD-L). To determine sustained write performance,
dummy data equal to twice the device’s capacity is first
written for aging, and the throughput of subsequent writing
for 8 GB is measured. Fig. 1 shows that random write perfor-
mance catches up with sequential write performance when
the request size is 16MB or 32MB. These unique performance
characteristics motivate the second design principle of SFS:
write bandwidth maximization by sequential writes to SSD.

2.3 Skewness in I/O Workloads
Many researchers have pointed out that workloads have
non-uniform access frequency distribution [11], [26]–[31]. A
disk-level trace of personal workstations exhibits a high
locality of references in that 90% of the writes go to the 1%
of blocks [26]. Roselli et al. [27] analyzed file system traces
collected from four different groups of machines, and they
found that files tend to be either read-mostly or write-mostly
and the writes show substantial locality. And, the distribution
of thewrite frequency in on-line transaction processing (OLTP)
TPC-C workload is also highly skewed: 29% of writes go to
1.6% of pages [11]. Analysis of Bhadkamkar et al. [28] also
confirms that the top 20% most frequently accessed blocks
contribute to a substantially large (45-66%) percentage of total
access. Fig. 2 depicts the cumulative write frequency distribu-
tion of three real workloads: an IO trace collected by ourselves
while running TPC-C [32] using Oracle DBMS (TPC-C), a
research group trace (RES), and a web server trace equipped
with PostgresDBMS (WEB) collected byRoselli et al. [27]. Such
skewness in workloads motivates the third design princi-
ple of SFS: block grouping according to write frequency.

3 DESIGN OF SFS
SFS is motivated by a simple question: How can we utilize the
performance characteristics of SSD and the skewness of

workloads in designing an SSD-based file system? In this section,
we describe the rationale behind the design decisions in SFS,
its system architecture, and several key techniques including
hotness measure, segment quantization, segment writing,
segment cleaning, victim selection policy, and crash recovery.

3.1 SFS: Design of SSD-Based File Systems
Existing file systems and modern SSDs have evolved sepa-
ratelywithout consideration of each other.With the exception
of the recently introduced TRIM command, the two layers
communicate with each other through simple read and write
operations using only LBA information. For this reason, there
are many impedance mismatches between the two layers,
thus hindering the optimal performancewhen both layers are
simply used together. In this section, we explain three design
principles of SFS. First, we identify general performance
problems when the existing file systems are running on
modern SSDs and suggest that a file system should exploit
the file block semantics directly. Second, we propose to take a
log-structured approach based on the observation that the
random write bandwidth is much slower than the sequential
one. Third, we criticize that the existing lazy data grouping in
LFSduring segment cleaning fails to fully utilize the skewness
in write patterns and argue that an eager data grouping is
necessary to achieve sharper bimodality in segment utiliza-
tion. In followings, we will describe each principle in detail.

File block level statistics—Beyond LBA: The existing file
systems perform suboptimally when running on top of SSDs
with current FTL technology. This suboptimal performance
can be attributed to poor randomwrite performance of SSDs.
One of the basic functionalities of file systems is to allocate an
LBA for a file block. With regard to this LBA allocation, there
have been two general policies in file system community:
in-place-update and no-overwrite. The in-place-update file sys-
tems such as FAT32 [33] and ext4 [34] always overwrite adirty
file block to the same LBA so that the same LBA ever corre-
sponds to the file block unless the file frees it. This unwritten
assumption in file systems, together with the LBA level inter-
face between file systems and storage devices, allows the
underlying FTL mechanism in SSDs to exploit the overwrite
of the same LBA address. In fact, most FTL research [5]–[7],
[35] has focused on improving the randomwrite performance
based on the LBA level write patterns. Despite the relentless
improvement in FTL technology, the random write band-
width inmodern SSDs, as presented in Section 2.2, still lags far
behind the sequential one.

Meanwhile, several no-overwrite file systems have been
implemented, such as btrfs [10], ZFS [9], andWAFL [8],where
dirty file blocks are written to new LBAs. These systems are
known to have better scalability, reliability, and manage-
ability [36]. In those systems, however, because the unwritten

TABLE 1
Specification Data of the Flash Devices. List Price Is as

of September 2011

Fig. 1. Sequential vs. random write throughput.

Fig. 2. Cumulative write frequency distribution.

MIN ET AL.: DESIGN AND IMPLEMENTATION OF A LOG-STRUCTURED FILE SYSTEM 2217

assumption between file blocks and their corresponding
LBAs is broken, the FTL receives new LBA write request for
every update of a file block and thus cannot exploit any file
level hotness semantics for random write optimization.

In summary, the LBA-based interface between the
no-overwrite file systems and storage devices does not allow
the file blocks’ hotness semantic to flow down to the storage
layer. The poor random write performance in SSDs is the
source of suboptimal performance in the in-place-update file
systems. Consequently, we suggest that file systems should
directly exploit the hotness statistics at the file block level. This
leads to improve the file system performance regardless of
whether the unwritten assumption holds or not and regard-
less of how the underlying SSDs perform on random writes.

Write bandwidthmaximization by sequentializedwrites
to SSD: In Section 2.2, we showed that the throughput of the
random write becomes equal to that of the sequential write
only when the request size is a multiple of the clustered block
size. To exploit such performance characteristics, SFS takes a
log-structured approach that turns random writes at the file
level into sequential writes at the LBA level. Moreover, in
order to utilize nearly 100% of the raw SSD bandwidth, the
segment size is set to a multiple of the clustered block size.
The result is that the performance of SFS will be limited by
the maximum sequential write performance regardless of
random write performance.

Eager on writing data grouping for better bimodal
segmentation: When there are not enough free segments, a
segment cleaner copies the live blocks from the victim seg-
ments in order to secure free segments. Since segment clean-
ing includes reads and writes of live blocks, it is the main
source of overhead in any log-structured file system [16]–[18].
Fig. 3 illustrates two examples of the segment cleaning proce-
dure, and shows why careful data block placement is impor-
tant. Let us assume that all hot blocks are updated (Step 1).
In Fig. 3(a), a segment cleaner should move four cold blocks
to secure empty segments (Step 2). On the other hand, in
Fig. 3(b), since all hot blocks in Segment 1 are already
invalidated, there is no need to move blocks at segment
cleaning (Step 2). It shows that, if hot data and cold data are
grouped into separate segments, the segment utilization dis-
tribution becomes bimodal: most of the segments are almost
either full or empty of live blocks. Therefore, because the
segment cleaner can almost always work with nearly empty
segments, the cleaning overhead will be drastically reduced.

To form a bimodal distribution, LFS uses a cost-benefit
policy [13] for segment cleaning that prefers cold segments to

hot segments. However, previous studies [16]–[19] show that
even the cost-benefit policy performs poorly under the large
segment size (e.g., 8 MB), because the increased segment size
makes it harder to find nearly empty segments.With SSD, the
cost-benefit policy encounters a dilemma: small segment size
enables LFS to form a bimodal distribution, but small random
writes caused by the small segment severely degrades write
performance of SSD. Instead of separating the data lazily on
segment cleaning afterwriting them regardless of their hotness,
SFS classifies data proactively on writing using file block level
statistics, as well as on segment cleaning. In such eager data
grouping, since segments are already composed of homoge-
neous datawith similar update likelihood, the segment clean-
ing overhead will be significantly reduced. In particular, the

skewness commonly found in many real workloads will
make this more attractive.

3.2 SFS Architecture
SFS has four core operations: segment writing, segment
cleaning, reading, and crash recovery. Segment writing and
segment cleaning are particularly crucial for performance
optimization in SFS, as depicted in Fig. 4. Because the read
operation is the same as that of existing log-structured file
systems, we will not cover its detail in this paper.

As ameasure for representing the future update likelihood
of data in SFS, we define hotness for file block, file, and
segment, respectively. As the hotness is higher, the data is
expected to be updated sooner. The first step of segment
writing in SFS is to determine the hotness criteria for block
grouping. This is, in turn, determined by segment quantiza-
tion that quantizes a range of hotness values into a single
hotness value for a group. For brevity, it is assumed through-
out this paper that there are four segment groups: hot, warm,
cold, and read-only groups. The second step is to calculate the
block hotness for each dirty block and assign them to the
nearest quantized group by comparing the block hotness and
the group hotness. At this point, those blocks with similar
hotness levels should belong to the samegroup. The third step
is to fill a segmentwith blocks belonging to the same group. If
the number of blocks in a group is not enough to completely
fill a segment, the segment writing of the group is deferred
until the group grows to completely fill a segment. This eager
grouping of file blocks according to the hotness serves to
colocate blocks with similar update likelihoods in the same

Fig. 3. Hot/cold data block placement and segment cleaning: (a) cold
blocks are colocatedwith hot blocks in the same segment, and (b) hot and
cold blocks are separated into different segments.

Fig. 4. Segment writing and cleaning process in SFS.

2218 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

segment. Therefore, segmentwriting in SFS is very effective at
achieving sharper bimodality in segment utilization distribu-
tion. Meanwhile, upon a check-point for crash recovery, SFS
unconditionally flushes all the groups to the disk, regardless
of their size.

Segment cleaning in SFS consists of three steps: select
victim segments, read the live blocks from the victim seg-
ments into the page cache and mark the live blocks as dirty,
and trigger the writing process. The writing process treats the
live blocks from victim segments the same as normal blocks;
each live block is classified into a specific quantized group
according to its hotness. After all the live blocks are read into
the page cache, the victim segments are thenmarked as free so
that they can be reused for writing. For better victim segment
selection, cost-hotness policy is introduced, which takes into
account both the number of live blocks in the segment (i.e.,
cost) and the segment hotness.

In the following sections, we will explain each component
of SFS in detail: how to measure the hotness (Section 3.3),
segment quantization (Section 3.4), segment writing
(Section 3.5), segment cleaning (Section 3.6), and crash
recovery (Section 3.7).

3.3 Measuring Hotness
In SFS, hotness is used as ameasure of how likely the data is to
be updated. Although it is difficult to estimate data hotness
without prior knowledge on future access pattern, SFS
exploits both the skewness and the temporal locality in the

workload to estimate the update likelihood of data.
From the skewness observed in many workloads, frequently
updated data tends to be updated quickly.Moreover, because
of the temporal locality in references, the recently updated
data is likely to be changed quickly. Thus, using the skewness
and the temporal locality, hotness can generally be defined as

. Each hotness of file block, file, and segment is
specifically defined as follows.

First, block hotness is defined by age andwrite count of a
block as follows:

>

where is the current time, is the last modified time of the
block, and is the total number of writes on the block since
the block was created. If a block is newly created (),
is defined as the hotness of the file that the block belongs to.

Next, file hotness is used to estimate the hotness of a
newly created block. It is defined as follows:

where is the last modified time of the file, and is the
total number of block updates since the file was created.

Finally, segment hotness represents how likely a segment is
to be updated. Since the update likelihood of a segment is
determined by the live blocks contained in the segment, the
segment hotness should be a representative value of the block
hotness of the liveblocks. Let us consider agraphwhose x-axis
and y-axis represent the age and thewrite count, respectively.

On this graph, the blockhotness can bedefinedas the slope for
a line passing the origin and the particular (age, write count)
point. Therefore, the segment hotness can also be defined as
the slope of the best-fitting line for the (age, write count) points
of the liveblocks. Thebest-fitting line canbeobtainedbyusing
the principle of least squares [37]. Since y-interception of the
line shouldbe zerobyourdefinitionof thehotness, the slope is

simply according to the method of least

squares [37]. Therefore, we define the hotness of a segment
as follows:

where is the number of live blocks in a segment, , ,
and are block hotness, lastmodified time, andwrite count
of -th live block, respectively. The computational cost of
is negligible, since we can incrementally calculate with-
out checking the liveness of blocks in the segment: when a
segment is created, SFS stores and in the
segment usage meta-data file (SUFILE), and updates them
by subtracting and whenever a block is invalidated.
We will elaborate on meta-data management for hotness in
Section 4.1.

3.4 Segment Quantization
To minimize the segment cleaning overhead, it is crucial for
SFS to properly group blocks according to hotness. The
effectiveness of block grouping is determined by the number
of groups and the grouping criteria. They should reflect the
hotness distribution. In fact, improper criteria may colocate
blocks from different groups into the same segment, thus
deteriorating the effectiveness of grouping. Moreover, given
improper number of groups, it is hard to find the proper
criteria. In this subsection, we will introduce our solution to
find the proper criteria. The effect of the number of the groups
on performance will be discussed in Section 4.2.

In SFS, segment quantization is a process used to partition
the hotness range of a file system into sub-ranges and
calculate a quantized value for each sub-range representing
a group. There aremany alternativeways to quantize hotness.
For example, each group can be quantized using equi-height
partitioning or equi-width partitioning. Equi-height partitioning
equally divides the whole hotness range into multiple sub-
ranges and equi-width partitioning makes each group have
an equal number of segments. In Fig. 5, the segment hotness
distribution is computed by measuring the hotness for all
segments on the disk after running TPC-C workload under

Fig. 5. Example of segment quantization.

MIN ET AL.: DESIGN AND IMPLEMENTATION OF A LOG-STRUCTURED FILE SYSTEM 2219

70% file system utilization. In such a distribution where most
segments are not hot, however, both approaches fail to cor-
rectly reflect the hotness distribution and the resulting group
quantization may be suboptimal.

In order to correctly reflect the hotness distribution of
segments and to properly quantize them, we propose an
iterative segment quantization algorithm. Inspired by k-means
clustering [38], our iterative segment quantization partitions
segments into groups and tries to find the centers of natural
groups through an iterative refinement approach. Moreover,
unlike k-means clustering, because our algorithm repetitively
clusters a gradually changingdata set (i.e. segment hotness) at
every segment writing, we can expedite the convergence by
choosing the initial centers of the current run to those of the
previous run. A detailed description of the algorithm is as
follows:

1) If the number ofwritten segments is less than or equal to
, assign a randomly selected segment hotness to initial

value of , which denotes hotness of the -th group.
2) Otherwise update as follows:

a) Assign each segment to the group whose hotness
is closest to the segment hotness.

b) Calculate the newmeans to be the grouphotness .

3) Repeat Step 2 until no longer changes or three times
at most.

Even though its computational overhead is linear to the
number of segments, the large segment size means that the
overhead of the proposed algorithm is reasonable (32 seg-
ments for 1 GB disk space given 32 MB segment size). For
faster convergence, SFS stores in meta-data and reloads
them at mounting. Although a few heuristic-driven ap-
proaches have been used for optimizing block placement in
storage systems [35], [39], [28], to our knowledge, SFS is the
first file systemwhich exploits machine learning algorithm in
classifying blocks.

3.5 Segment Writing
Segment writing is invoked in four cases: (a) SFS periodically
writes dirty blocks everyfive seconds, (b)flushdaemon forces
a reduction in the number of dirty pages in the page cache,
(c) segment cleaning occurs, and (d) an fsync or sync occurs.As
illustrated in Fig. 4, thefirst stepof segmentwriting is segment
quantization: all are updated as described in Section 3.4.
Next, the block hotness of every dirty block is calculated,
and each block is assigned to the group whose hotness is
closest to the block hotness.

Toprevent blocks indifferent groupsbeing colocated in the
same segment, SFS writes only the groups large enough to
completely fill a segment. Thus, when the group size, i.e. the
number of blocks belonging to a group, is less than the
segment size, SFS will defer writing the blocks to the segment
until the group size reaches the segment size. However, when

SFS initiates a check-point, every dirty block including the
deferred blocks should be immediately written to segment.
In this case, we take a best-effort approach: writing out as
many blocks as possible group-wise, and then writing only
the remaining blocks regardless of group. In all cases, writing
a block accompanies updating relevant meta-data, , ,

, , , and , and invalidating the liveness of
the overwritten block. Since the writing process continuously
reorganizes file blocks according to hotness, it helps to form
sharp bimodal distribution of segment utilization, and thus to
reduce the segment cleaning overhead. Further, in most cases
except when updating a superblock, SFS always generates
large sequential and well-aligned write requests that are
optimal for SSD.

Meanwhile, the live blocks under segment cleaning should
be carefully treated. Writing the blocks under segment clean-
ing can also bedeferred if the corresponding group is not large
enough.However, this deferredwrite can cause those not-yet-
written blocks to be lost upon system crashes, if the segments
to which the block originally belonged are already used for
writing other blocks. To copewith such data loss, we propose
two techniques. First, SFS manages a free segment list and
allocates segments in the least recently freed (LRF) order.
Second, SFS checks whether writing a normal block could
cause a not-yet-written block under segment cleaning to be
overwritten. Fig. 6 illustrates an example of this scheme. Let
denote the segment lastly allocated and denote the
segment to be allocated next. Before segment writing, SFS
first checks whether there are not-yet-written blocks under
cleaning that originate in (Step 1). If such blocks exist, SFS
writes those blocks to regardless of their grouping so as
to avoid overwriting the originating segment of each block
(Step 2). Then, SFS writes the remaining blocks by grouping
(Step 3). This guarantees that the segment-cleaned blocks are
never lost against a system crash or a sudden power off,
because each block always has its on-disk copy. The LRF
allocation scheme increases the opportunity for a segment-
cleaned block to be written by the block grouping.

3.6 Segment Cleaning: Cost-Hotness Policy
In any log-structured file system, the victim selection policy is
critical to minimizing the overhead of segment cleaning.
There are two well-known segment cleaning policies: greedy-
policy [13] and cost-benefit policy [13], [40]. Greedypolicy always
selects segments with the smallest number of live blocks,
hoping to reclaim as much space as possible with the least
copying out overhead. Cost-benefit policy prefers cold

Fig. 6. Preventing data loss during segment cleaning.

2220 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

segments to hot segments when the number of live blocks is
equal, because the cold data tends to remain unchanged for a
long time before it becomes invalidated. Even though it is
critical to estimate how long a segment remains unchanged,
cost-benefit policy simply uses the age of the youngest block
as a simple measure of the segment’s update likelihood.

As a natural extension of cost-benefit policy, we introduce
cost-hotness policy; since hotness in SFS directly represents the
update likelihoodof segment,weuse segment hotness instead
of segment age. Thus, SFS chooses a victim among the seg-
ments, which maximizes the following formula:

where is segment utilization, i.e. the fraction of the live
blocks in a segment. The cost of collecting a segment is
(one to read valid blocks and the other to write them
back). Although cost-hotness policy needs to access the utili-
zation and the hotness of all segments, it is very efficient
because our implementation keeps them in segment usage
meta-data file (SUFILE) and meta-data size per segment is
quite small (48 bytes long). Since all segment usage informa-
tion is mostly cached in memory, disk is rarely required.

In SFS, the segment cleaner is invokedwhen thefile system
utilization exceeds a water-mark. The watermark for our
experiments is set to 95% of the file system capacity and the
segment cleaning is allowed toprocess up to three segments at
once (96 MB given the segment size of 32 MB). The prototype
didnot implement the idle time cleaning scheme suggestedby
Blackwell et al. [41], yet this could be seamlessly integrated
with SFS.

3.7 Crash Recovery
Like the traditional LFS [13], SFS uses two mechanisms to
recover from the file system inconsistency: check-point, which
defines consistent states of the file system, and roll-forward,
which is used to recover information written since the last
check-point. Frequent check-pointing can minimize the roll-
forward time after crashes but can hinder normal system
performance. Considering this trade-off, SFS performs the
check-point in four cases: (a) every thirty seconds after creat-
ing a check-point, (b)whenmore than 20 segments arewritten
to disk, (c) when sync or fsync operation is performed, and
(d) when unmounting the file system.

4 EVALUATION

4.1 Experimental Systems
Implementation:We implemented SFSbasedonNILFS2 [42],
which extends the log-structured file system [13] to support
continuous snapshot [43] for ease of management. We retro-
fitted the in-memory and on-disk meta-data structures of
NILFS to support block grouping and cost-hotness segment
cleaning.

Implementing SFS requires a significant engineering effort,
despite the fact that it is based on the already existingNILFS2.
NILFS2 uses b-tree for scalable block mapping between the
file offset to the virtual sector address. It translates the virtual
sector address to the physical sector address by using the data
address translation (DAT) meta-data file. It always assigns a

new virtual sector address for every block update to support
the continuous snapshot. Updating a leaf block in a b-tree is
alwayspropagatedup to the root node andall the correspond-
ing virtual-to-physical entries in the DAT are also updated.
Consequently, random writes entail a significant amount of
meta-data updates—writing 3.2 GB with 4 KB unit gen-
erates 3.5 GB of meta-data. To reduce this meta-data update
overhead and support the check-point creation policy dis-
cussed in Section 3.7, we decided to cut off the continuous
snapshot feature. By turning off the continuous snapshot, we
need to update only one virtual-to-physical entry in the DAT
for a block update. Instead, SFS-specific fields are added to
several meta-data structures: superblock, inode file (IFILE),
segment usagefile (SUFILE), andDATfile. Grouphotness
is stored in the superblock and loaded at mounting for the
iterative segment quantization. Perfilewrite count and the
last modified time are stored in the IFILE. The SUFILE
contains information for hotness calculation and segment
cleaning: , , and . Per-block write count

and the last modified time are stored in the DAT entry.
Of these, and are the largest, each being eight bytes
long. Since themeta-data fields for continuous snapshot have
been removed, the size of the DAT entry in SFS remains the
same as that ofNILFS2 (32 bytes). As a result of these changes,
we reduce the runtime overhead of meta-data to 5%–10% for
the workloads used in our experiments. Since ameta-data file
is treated the same as a normal file with a special inode
number, a meta-data file can also be cached in the page cache
for efficient access.

Segment cleaning in NILFS2 takes simple time-stamp policy
[42] that selects the oldest dirty segment as a victim. For SFS,
we implemented the cost-hotness policy and segment clean-
ing triggering policy.

In our implementation, we used Linux kernel 2.6.37 on a
PC using a 2.67 GHz Intel Core i5 quad-core processor with
4 GB of physical memory. All experiments except for those
with btrfs are performed on the kernel: we use the btrfs in the
latest kernel version at this writing, 3.7.1, for fair comparison,
because btrfs is one of the most actively developing file
systems.

Target SSDs:For this paper,we select three state-of-the-art
SSDs as shown in Table 1. The high-end SSD is based on SLC
flashmemory and the rest are based onMLC.Hereafter, these
three SSDs are referred to as SSD-H, SSD-M, and SSD-L
ranging from high-end to low-end. As Fig. 1 shows, the
request sizes of random write whose bandwidth converges
to that of sequential write are 16 MB, 32 MB, and 16 MB for
SSD-H, SSD-M, and SSD-L, respectively. To fully exploit
device performance, the segment size is set to 32 MB for all
three devices.

Workloads:We use a mixture of synthetic and real-world
workloads. Two real-world file system traces are used in our
experiments: OLTP database workload and desktop work-
load. For OLTP database workload, the file system level trace
is collected while running TPC-C [32] on Oracle 11g DBMS
and the load server runs Benchmark Factory [44]. For desktop
workload,weusedRES [27],which is collected for 113days on
13 desktop machines of a research group. In addition, two
traces of random writes with different distributions are gen-
erated as synthetic workloads: Zipfian distribution and uni-
form random distribution. The uniform random write is the

MIN ET AL.: DESIGN AND IMPLEMENTATION OF A LOG-STRUCTURED FILE SYSTEM 2221

workload that shows theworst case behavior of SFS, since SFS
tries to utilize the skewness in workloads during block
grouping.

Since one of main goal of SFS is to achieve the maximum
write bandwidth of the storage devices, write requests are
replayed as fast as possible in a single thread. Although the
write requests are replayed with a single thread, our evalua-
tion result would achieve high IO parallelism in the storage
layer, since all thewrite requests by the re-player are cached in
the page cache and then flushed to the storage in bulk
regularly by the file system. Throughput is measured at the
application level and Native Command Queuing (NCQ) is
enabled to maximize the parallelism in the SSD. To explore
the system behavior on various file system utilizations, we
sequentially filled the SSD with enough dummy blocks,
which are never updated after creation, until the desired
utilization is reached. Since the amount of the data block
update is the same for aworkload regardless of thefile system
utilization, the amount of the meta-data update is also the
same. Therefore,we can directly compare performancemetrics
for a workload regardless of the file system utilization.

Write Cost:Towrite newdata, a new segment is generated
by the segment cleaner. This cleaning process will incur
additional read and write operations for the live blocks being
segment-cleaned. Therefore, the write cost of data should
include the implicit cost of segment cleaning as well as
the pure write cost of new data. In this paper, we define the
write cost to compare the write cost induced by the seg-
ment cleaning. It is defined by three component costs—the
write cost of new data , the read and the write cost of the
data being segment-cleaned, and —as follows:

Each component cost is defined by division of the amount
of by throughput in Table 1. Since the unit of write is
always a large sequential chunk, we choose the maximum
sequentialwrite bandwidth for throughputs of and .
Meanwhile, since the live blocks are assumed to be randomly
located in a victim segment, the 4KB random read bandwidth
is selected for the throughput of .Wemeasured the amount
of while replaying theworkload trace and thus calculated
the write cost for the workload.

4.2 Effectiveness of SFS Techniques
As discussed in Section 3, the key techniques of SFS are (a) on
writing block grouping, (b) iterative segment quantization,
and (c) cost-hotness segment cleaning. To examine how each
technique contributes to the performance, we measured the
write costs of Zipf andTPC-Cworkloadunder 85%file system
utilization on SSD-M.

First, to verify how the block grouping is effective, we
measured the write costs by varying the number of groups
from one to six. As shown in Fig. 7(a), we can observe that the
effect of block grouping is considerable. When the blocks are
not grouped (i.e. the number of groups is one), the write cost
is fairly high: 6.96 for Zipf and 5.98 for TPC-C. Even for two
or three groups, no significant reduction in write cost is
observed. However, when the number of groups reaches four
the write costs of Zipf and TPC-C workloads significantly
drop to 4.21 and 2.64, respectively. For five or more groups,
thewrite cost reduction ismarginal. The additional groups do
not help much when there are already enough groups cover-
ing hotness distribution.

Next, we compared the write cost of the different quanti-
zation schemes across four groups. Fig. 7(b) shows that our
iterative segment quantization reduces the write costs signifi-
cantly. The equi-width partitioning scheme has the highest
write cost; 143% for Zipf and 192% for TPC-C over our
scheme. Thewrite costs of the equi-heightpartitioning scheme
are 115% for Zipf and 135% for TPC-C over our scheme.

Then, we compared the write cost of cost-hotness policy
and cost-benefit policy with the iterative segment quantiza-
tion for four groups. As shown in Fig. 7(c), cost-hotness
policy can reduce the write cost by approximately 7% over
both TPC-C and Zipf workload.

Finally, to evaluate the effect of check-point interval on the
performance, wemeasured thewrite cost by varying both time
and space interval. Fig. 8 presents the relativewrite cost change
to our baseline configuration, 30 seconds and 20 segments. As
observed in Fig. 8, as the time and space intervals increase, the
write costs moderately decrease across all the intervals (6.1%
increase at most and 3.3% decrease at least). One interesting
point to note in Fig. 8 is that thewrite costs aremore sensitive to
the space interval, and this is because the check-points are
mostly triggered by the space interval in our experiments.
Throughout the rest of this paper, we will use the default
checkpoint interval of 30 seconds and 20 segments.

4.3 Performance Evaluation

4.3.1 Write Cost and Throughput
To showhowSFSandLFSperformagainst variousworkloads
with different write patterns, we measured their write costs
and throughput for all four workloads in Figs. 9 and 10. For
LFS, we implemented the cost-benefit cleaning policy in our
code base (hereafter LFS-CB). Since throughput is measured
at the application level, it includes the effects of the page cache
and thus can exceed themaximum throughput of eachdevice.
Due to space constraints, only the experiments on SSD-M are

Fig. 7. Effectiveness of SFS techniques.

Fig. 8. Write cost vs. check-point intervals.

2222 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

shown here. The performance of SFS on different devices is
shown in Section 4.3.3.

First, it is clear fromFig. 9 that SFS significantly reduces the
write cost compared to LFS-CB. In particular, the relative
write cost improvement of SFS over LFS-CB gets higher as the
utilization increases. Since there is not enough time for the
segment cleaner to reorganize blocks under high utilization,
our on writing data grouping shows greater effectiveness. For
the TPC-Cworkloadwith high update skewness, SFS reduces
the write cost by 77.4% under 90% utilization. For skewless
uniform random workload, SFS reduces the write cost by
27.9% under 90% utilization. This shows that SFS can effec-
tively reduce the write cost for various workloads.

To see if the lower write costs in SFS will result in higher
performance, throughput is also compared. As Fig. 10 shows,
SFS improves throughput of the TPC-C workload by 151.9%
and that of uniform random workload by 18.5% under 90%
utilization. It shows that the write cost reduction in SFS
actually results in performance improvement.

4.3.2 Segment Utilization Distribution
To analyze why SFS significantly outperforms LFS-CB, we
also compared the segment utilization distribution which is a

fraction of live blocks in a segment. After running aworkload,
the distribution is computed by measuring the utilizations of
all non-dummy segments. Fig. 11 shows the segment utiliza-
tion distribution when file system utilization is 70% and
segment size is 32MB. Since SFS continuously re-groups data
blocks according to hotness onwriting and segment cleaning,
it is likely that a sharp bimodal distribution is formed.We can
see the obvious bimodal segment distribution in SFS for all
workloads except for the skewless uniform random work-
load. Even in the case, the segment utilizationof SFS is skewed
to lower utilization. Under such bimodal distribution, the
segment cleaner can select as victims those segmentswith few
live blocks. For example, as shown in Fig. 11(a), SFSwill select
a victim segment with 10% utilization, while LFS-CB will
select a victim segmentwith 30%utilization. In this case, since
SFSmovesonly one-thirdblocksduring segment cleaning, the
segment cleaning overhead of SFS is significantly lower than
that of LFS-CB. This experiment shows that SFS forms a sharp
bimodal distribution of segment utilization by data block
grouping, and reduces the write cost.

As we discussed in Section 3.1, the cost-benefit policy used
in LFS-CB is less effective under large segment size. To verify
how the small segment affect the segment utilization distri-
bution and write cost, we run TPC-C and Zipf workloads
when the segment size is 2MB,which is the same size used by
Rosenblum and Ousterhout [13]. Fig. 12 shows that LFS-CB
forms far sharper bimodal distribution than in 32MB segment
size. However, as shown in Fig. 1, in SSD-M, the sustained
random write performance in 2 MB is about 11 times lower
than that in 32MB, and thus thewrite costs of SFS andLFS-CB
are surged to 7.7 and 4.0 times for Zipf and 5.9 and 3.5 times

Fig. 9. Write cost vs. file system utilization with SFS and LFS-CB on
SSD-M.

Fig. 10. Throughput vs. file system utilization with SFS and LFS-CB on
SSD-M.

Fig. 11. Segmentutilizationvs. fractionof segmentswhensegment size is
32 MB.

Fig. 12. Segmentutilizationvs. fractionof segmentswhensegment size is
2 MB.

MIN ET AL.: DESIGN AND IMPLEMENTATION OF A LOG-STRUCTURED FILE SYSTEM 2223

for TPC-C, respectively. From this, we know that, although
LFS-CB is quite effective in forming bimodal distributionwith
small segment size (e.g., 2 MB), it has its limitations in
achieving high skewness under large segment size (e.g.,
32 MB), which is a prerequisite in SSD for sustaining maxi-
mum write bandwidth. In contrast, SFS can achieve sharper
bimodal segment distribution even with the segment size
large enough to sustain maximum write bandwidth.

4.3.3 Effects of SSD Performance
The internal hardware and software architectures vary sig-
nificantly among SSDs [20], and thus each SSD exhibits
different performance dynamics [3], [4], [25]. To verifywheth-
er SFS can improve the performance on various SSDs, we
compared throughput of the same workloads on SSD-H,
SSD-M, and SSD-L in Fig. 13. As shown in Table 1, the
maximum sequential write performance of SSD-H is 4.5 times
faster than SSD-L, and the 4 KB randomwrite performance of
SSD-H ismore than 2,500 times faster than SSD-L. Despite the
fact that these three SSDs show such large variances in
performance and price, Fig. 13 shows that SFS performs well
regardless of the random write performance. The main limit-
ing factor is themaximum sequential write performance. This
is because, except for updating superblock, SFS always gen-
erates large sequential writes to fully exploit the maximum
bandwidth of SSD. The experiment shows that SFS can
provide high performance even on mid-range or low-end
SSD if sequential write performance is high enough.

4.4 Comparison with Other File Systems
In this section, we compared the performance of SFS with
three other file systems, each with different block update
policies: LFS-CB for logging policy, ext4 [34] for in-place-update
policy, and btrfs [10] for no-overwrite policy. To enable btrfs’
SSD optimization, btrfs was mounted in SSD mode. Though
JFFS2 [45], YAFFS2 [46], and UBIFS [47] are popular log-
structured file systems for flash storage in wide use, we did
not compare SFS with them because they are designed to
work only on raw flash devices. Four workloads were run on
SSD-M with 85% file system utilization. To obtain the sus-
tained performance, we measured 8 GB writing after 20 GB
writing for aging.

First,wecompared throughputof thefile systems inFig. 14.
SFS significantly outperforms other file systems for all four
workloads. The average throughputs of SFS are higher than
those of the others: 1.6 times for LFS-CB, 2.4 times for btrfs,
and 1.5 times for ext4.

Next, we compared the write amplification in Fig. 15,
which is the ratio of the number of physical data page writes
inside SSD to the number of logical data page writes by a file
system. We collected traces issued by the file systems
using blktrace [48] while running four workloads, and the
traces were run on an FTL simulator, which we implemented
with two FTL schemes: (a) FAST [5] as a representative hybrid
FTL scheme and (b) page-level FTL [40]. In both schemes,
we configure a large block 32 GB NAND flash memory with
4 KB page, 512 KB block, and 10% over-provisioned capacity.
As Fig. 15 shows, in all cases, write amplifications of log-
structured file systems, SFS and LFS-CB, are lowest: 1.1 in
FAST and 1.0 in page-level FTL on average. The LBA-level
sequential writing results in an optimal switch merge [5] in
FAST and creates large chunks of contiguous invalid pages in
page-level FTL. In contrast, the in-place-update file system,
ext4, has the largest write amplifications: 5.3 in FAST and 2.8
in page-level FTL on average. Since the random writes at the
file level result in random writes at the LBA level, this con-
tributes to highwrite amplification.Meanwhile, because btrfs
allocates a new block for every update, it is likely to lower the
average write amplification: 4.5 in FAST and 1.6 in page-level
FTL on average.

Finally, we compared block erase counts that determine
the lifespan of SSD in Fig. 16. The number of block erases in
SFS is smallest: LFS-CB incurs totally 20%more block erases in
both FTL schemes. Erase counts of the overwrite file systems
are significantly higher than that of SFS. In total, ext4 incurs
3.1 timesmore block erases in FAST, and 1.8 timesmore block
erases in page-level FTL. Interestingly, btrfs incurs the largest
number of block erases: in total, 8.9 timesmore block erases in
FAST and 4.9 times more block erases in page-level FTL, and,
in the worst case, 23.3 times more block erases than SFS. As
shown in Fig. 17, btrfs generates 2.2 times more page writes

Fig. 14. Throughput under different file systems.

Fig. 15. Write amplification with different FTL schemes.

Fig. 13. Throughput vs. file system utilization with SFS on different
devices.

2224 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

than SFS. This excessive page writes in btrfs can be explained
by its intrinsic overhead to support copy-on-write and man-
age fragmentation induced by random writes at the file level
[49]–[51].

In summary, the erase count of the in-place-update file
system is high because of highwrite amplification. That of the
no-overwrite file system is also high due to the number of
write requests from the file system, even at relatively low
write amplification. Themajority of the overhead comes from
supporting no-overwrite policy and handling fragmentation
in the file system. In case of log-structured file systems, if we
carefully choose segment size to be alignedwith the clustered
block size, write amplification can be minimal. In this case,
the segment cleaning overhead is the major overhead that
increases the erase count. SFS is shown to drastically reduce
the segment cleaning overhead. It can also be seen that the
write amplification and erase count of SFS are significantly
lower than those of all other file systems. Therefore, SFS can
significantly increase the lifetime as well as the performance
of SSDs.

4.5 Applicability of SFS to HDDs
Though SFSwas originally designed to primarily target SSDs,
its key techniques are agnostic to the types of storage devices.
While random write is more serious in SSD since it hurts the
lifespan as well as performance, it also hurts performance in
HDDas a result of the increased seek-time. Therefore, SFS can
be useful in mitigating the random write overhead in HDDs.
In this subsection, we explored the applicability of SFS to
HDDs. We evaluated SFS on a mid-range HDD spinning at
7,200 RPM with a maximum sequential write throughput of

and a 4KB random read throughput of .
To compare with the experimental results on SSDs, we used
the same segment size and the same number of groups.

First, to evaluate how SFS and LFS-CB perform on HDD,
we measured their throughput under various file system
utilizations. As Fig. 18 shows, SFS outperforms LFS-CB in all
cases. Under 90% utilization, SFS improves throughput of
Zipf and uniform random workload by 70.9% and 37.5%,
respectively.

Second, to compare howSFS andLFS-CBperformonHDD
and SSD, we analyzed the ratio of write throughput in each
file system to the maximum sequential write throughput
of each device. Fig. 19 shows that the relative throughput of
SSD-M is far higher than that of HDD-M. Since the random
read speed on HDD is far slower than that of SSD, segment
cleaning onHDD suffers more by the random reads than that
on SSD.

Finally, in Fig. 20, we compare the throughput of SFS on
HDDwith LFS-CB, btrfs, and ext4. Under 85% utilization, the
average throughputs of SFS are higher than those of other

Fig. 17. Number of page writes on different file systems.

Fig. 18. Throughput vs. file system utilization with SFS and LFS-CB on
HDD-M.

Fig. 19. Relative write throughput to each device’s maximum sequential
write throughput.

Fig. 16. Number of erases with different FTL schemes.

Fig. 20. Throughput under different file systems on HDD-M. (Y-axis is in
log scale.)

MIN ET AL.: DESIGN AND IMPLEMENTATION OF A LOG-STRUCTURED FILE SYSTEM 2225

file systems: 1.7 times for LFS-CB, 21.4 times for btrfs, and
21.6 times for ext4.

These results clearly show that SFS is also quite effective in
HDDs by reducing the number of slow seeks, and that SFS is
more effective in SSDs as a result of the far faster random read
of SSDs that is incurred in segment cleaning.

5 RELATED WORK

Flash memory based storage systems and log-structured
techniques have received a lot of interests in both academia
and industry. Here we only present the research most related
to our work.

FTL-level approaches: There are many FTL-level
approaches to improve random write performance. Among
hybrid FTL schemes, FAST [5] and LAST [7] are representa-
tive. FAST [5] enhances random write performance by
improving the log area utilization with flexible mapping in
log area. LAST [7] further improves FAST [5] by separating
random log blocks into hot and cold regions to reduce the full
merge cost. Among page-level FTL schemes, DAC [35] and
DFTL [6] are representative. DAC [35] clusters data blocks
with similar write frequencies into the same logical group to
reduce the garbage collection cost. DFTL [6] reduces the
required RAM size for the page-level mapping table by using
dynamic caching. FTL-level approaches exhibit a serious
limitation in that they depend almost exclusively on LBA to
decide sequentiality, hotness, clustering, and caching. Such
approachesdeterioratewhenafile systemadopts ano-overwrite
block allocation policy.

Disk-based log-structured file systems: There is much
research to optimize log-structured file systems on HDDs. In
the hole plugging method [52], the valid blocks in victim seg-
ments are overwritten to the holes, i.e. invalid blocks, in other
segmentswith a few invalid blocks. Although this reduces the
copying cost in segment cleaning, it is beneficial only under a
HDD that allows in-place updates. Matthews et al. [18] pro-
posed an adaptive method that dynamically selects one of cost-
benefit policy and hole-plugging. However, their cost model
for the selection is based on the performance characteristics of
HDD, seekand rotationaldelay.WOLF[39] separateshotpages
and cold pages into two different segment buffers according to
the update frequency, and writes the two segments to disk at
once. This systemworkswell onlywhen hot and cold pages are
roughly half and half, so that they can be separated into two
segments. HyLog [19] uses logging hot pages for high write
performanceandoverwriting coldpages for reducing the clean-
ing cost. However, its cost model for determining the update
policy is based on the performance characteristics of HDD.

Flash-based log-structured file systems: Because the log-
structured approach can naturally handle the no overwrite
characteristics of flash, many log-structured file systems for
flashmemory such as JFFS2 [45], YAFFS2 [46], andUBIFS [47]
have been widely used. In terms of segment cleaning, each
uses a turn-based selection algorithm which is a variant of
greedy policy incorporated with wear-leveling into the clean-
ingprocess. This consists of twophases, namelyXandY turns.
In the X turn, it selects a victim segment using greedy policy
without considering wear-leveling. During the Y turn, it
probabilistically selects a full valid segment as a victim block
forwear-leveling.While all these existingfile systems forflash

memory are designed to run on raw flash devices, SFS
assumes block device interface.

6 CONCLUSION AND FUTURE WORK

Inthispaper,weproposedanextgenerationfilesystemforSSD,
SFS. It takes a log-structured approach which transforms the
random writes at the file system into the sequential writes at
the SSD, thus achieving high performance and also prolonging
the lifespan of the SSD. Also, to exploit the skewness in
workloads, SFS captures the hotness semantics at file block
level and utilizes these in grouping data eagerly onwriting. In
particular, we devised an iterative segment quantization
algorithm for correct data grouping and also proposed the
cost-hotness policy for victim segment selection. Our experi-
mental evaluation confirms that SFS considerably outperforms
existing file systems such as LFS, ext4, and btrfs, and prolongs
the lifespan of SSDs by drastically reducing block erase count
inside the SSD. In addition, we evaluated SFS on HDD since
our key techniques are agnostic to the types of storage devices.
Our experimental results clearly show that SFS is also quite
effective in HDDs because it turns the random writes into
sequential ones, reducing the number of slow seeks.

There are many avenues for future work. First, Kim et al.
[23] show that storage performance, especially SD card,
indeed affects the performance of common applications on
smartphones. Since the architecture of SD card is similar to
that of low-end SSD,we expect that SFS is also beneficial to SD
card. Next, most FTL in SSD takes variants of log-structured
approach, and thus some SFS techniques, such as on writing
data grouping and segment quantization, could be directly
applicable to FTL to lower the write amplification.

ACKNOWLEDGMENT

Sang-Won Lee and Young Ik Eom are the corresponding
authors of this paper. This work was supported by the
National Research Foundation of Korea (NRF) grant funded
by the Korea Government (MEST) (2012-0006423, 2010-
0026511, and 2012R1A1A2A10044300).

REFERENCES

[1] L. Barroso, “Warehouse-scale computing,” in Proc. Keynote Special
Interest Group Manag. Data Conf. (SIGMOD’10), article no. 2, 2010.

[2] D. G. Andersen and S. Swanson, “Rethinking flash in the data
center,” IEEE Micro, vol. 30, no. 4, pp. 52–54, Jul./Aug. 2010.

[3] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic
characteristics and system implications of flashmemory based solid
state drives,” in Proc. 11th Int. Joint Conf. Meas. Model. Comput Syst.,
2009, pp. 181–192.

[4] L. Bouganim, B. n. Jónsson, and P. Bonnet, “uFLIP: Understanding
flash IOpatterns,” inProc. Conf. Innov.Data Syst. Res., 2009, pp. 1–12.

[5] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, andH.-J. Song,
“A log buffer-based flash translation layer using fully-associative
sector translation,” ACM Trans. Embedded Comput. Syst., vol. 6, article
no. 18, 2007.

[6] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A flash translation
layer employing demand-based selective caching of page-level
address mappings,” in Proc. 14th Int. Conf. Archit. Support Program.
Lang. Oper. Syst., 2009, pp. 229–240.

[7] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: Locality-aware sector
translation for NAND flash memory-based storage systems,”
SIGOPS Oper. Syst. Rev., vol. 42, pp. 36–42, 2008.

[8] D. Hitz, J. Lau, andM. Malcolm, “File system design for an NFS file
server appliance,” in Proc. USENIXWinter Tech. Conf., article no. 19,
1994.

2226 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

[9] J. Bonwick. (2006). ZFS: The Last Word in File Systems [Online].
Available: http://tinyurl.com/36dhvvj

[10] C. Mason. (2007). The btrfs Filesystem [Online]. Available: http://
tinyurl.com/bljvcau

[11] S.-W. Lee and B. Moon, “Design of flash-based DBMS: An in-page
logging approach,” in Proc. ACM SIGMOD Int. Conf. Manag. Data,
2007, pp. 55–66.

[12] R. Stoica, M. Athanassoulis, R. Johnson, and A. Ailamaki, “Evaluat-
ing and repairing write performance on flash devices,” in Proc. 5th
Int. Workshop Data Manag. New Hardware, 2009, pp. 9–14.

[13] M. Rosenblum and J. K. Ousterhout, “The design and implementa-
tion of a log-structured file system,” ACM Trans. Comput. Syst.,
vol. 10, pp. 26–52, 1992.

[14] M. Seltzer, K. Bostic, M. K. Mckusick, and C. Staelin, “An imple-
mentation of a log-structured file system for UNIX,” in Proc.
USENIX Winter Conf., article no. 3, 1993.

[15] M.Seltzer,K.A. Smith,H. Balakrishnan, J.Chang, S.McMains, andV.
Padmanabhan,“File systemloggingversus clustering:Aperformance
comparison,” in Proc. USENIX Tech. Conf. Proc., article no. 21, 1995.

[16] M. Rosenblum, “The design and implementation of a log-structured
file system,” PhD dissertation, Univ. California at Berkeley,
Berkeley, CA, 1992.

[17] M. I. Seltzer, “File system performance and transaction support,”
PhD dissertation, Univ. California at Berkeley, Berkeley, CA, 1992.

[18] J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang, and T. E.
Anderson, “Improving the performance of log-structured file sys-
tems with adaptive methods,” in Proc. 16th ACM Symp. Oper. Syst.
Princ., 1997, pp. 238–251.

[19] W. Wang, Y. Zhao, and R. Bunt, “HyLog: A high performance
approach to managing disk layout,” in Proc. 3rd USENIX Conf. File
Storage Technol., 2004, pp. 145–158.

[20] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy, “Design tradeoffs for SSD performance,” in Proc.
USENIX Annu. Tech. Conf., 2008, pp. 57–70.

[21] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho, “A space-efficient
flash translation layer for CompactFlash systems,” IEEE Trans.
Consum. Electron., vol. 48, no. 2, pp. 366–375, May 2002.

[22] E. Seppanen,M. T. O’Keefe, andD. J. Lilja, “High performance solid
state storage under Linux,” in Proc. IEEE 26th Symp. Mass Storage
Syst. Technol., 2010, pp. 1–12.

[23] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for
smartphones,” in Proc. 10th USENIXConf. File Storage Technol., 2012,
pp. 209–222.

[24] X.-Y. Hu and R. Haas, “The fundamental limit of flash random
write performance: Understanding, analysis and performance
modelling,” IBM Research, Zurich, Res. Rep. RZ 3771, 2010.

[25] J. Kim, S. Seo, D. Jung, J. Kim, and J. Huh, “Parameter-aware
I/Omanagement for solid state disks (SSDs),” IEEE Trans. Comput.,
vol. 61, no. 5, pp. 636–649, May 2012.

[26] C. Ruemmler and J. Wilkes, “UNIX disk access patterns,” in Proc.
USENIX Winter Tech. Conf., 1993, pp. 405–420.

[27] D. Roselli, J. R. Lorch, and T. E. Anderson, “A comparison of
file system workloads,” in Proc. USENIX Annu. Tech. Conf., 2000,
pp. 41–54.

[28] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak,
R. Rangaswami, and V. Hristidis, “BORG: Block-reORGanization
for self-optimizing storage systems,” in Proc. 7th Conf. File Storage
Technol., 2009, pp. 183–196.

[29] S. Akyürek and K. Salem, “Adaptive block rearrangement,” ACM
Trans. Comput. Syst., vol. 13, pp. 89–121, 1995.

[30] C. Ruemmler and J. Wilkes, “Disk Shuffling,” Softw. Syst. Lab.,
Hewlett-Packard Lab., Tech. Rep. HPL-CSP-91-30, 1991.

[31] S. D. Carson, “A system for adaptive disk rearrangement,” Softw.
Pract. Exp., vol. 20, pp. 225–242, 1990.

[32] Transaction Processing Performance Council. (2010). TPC Bench-
mark C [Online]. Available: http://www.tpc.org/tpcc/spec/tpcc_
current.pdf

[33] S. Mitchel, Inside the Windows 95 File System. Sebastopol, CA, USA:
O’Reilly and Associates, 1997.

[34] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and
L. Vivier, “The new ext4 filesystem: Current status and future
plans,” in Proc. Linux Symp., 2007, vol. 2, pp. 21–33.

[35] M.-L. Chiang, P. C. H. Lee, and R.-C. Chang, “Using data clustering
to improve cleaning performance for flash memory,” Softw. Pract.
Exp., vol. 29, pp. 267–290, 1999.

[36] R. Paul. (2009). Panelists Ponder the Kernel at Linux Collaboration
Summit [Online]. Available: http://tinyurl.com/d7sht7

[37] W. Mendenhall, R. J. Beaver, and B. M. Beaver, Introduction to Prob-
ability and Statistics, 13th ed. Boston, MA, USA: Brooks/Cole, 2009.

[38] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means
clustering algorithm,” J. Roy. Stat. Soc. C, vol. 28, no. 1, pp. 100–108,
1979.

[39] J. Wang and Y. Hu, “A novel reordering write buffer to improve
write performance of log-structured file systems,” IEEE Trans.
Comput., vol. 52, no. 12, pp. 1559–1572, Dec. 2003.

[40] A.Kawaguchi, S. Nishioka, andH.Motoda, “Aflash-memory based
file system,” in Proc. USENIX Tech. Conf., 1995, pp. 13–13.

[41] T. Blackwell, J. Harris, and M. Seltzer, “Heuristic cleaning algo-
rithms in log-structured file systems,” in Proc. USENIX Tech. Conf.,
1995, pp. 23–23.

[42] R. Konishi. (2009). The NILFS2 Filesystem: Review and Challenges
[Online]. Available: http://tinyurl.com/au4xqve

[43] R. Konishi, K. Sato, and Y. Amagai. (2007). Filesystem Support for
Continuous Snapshotting [Online]. Available: http://tinyurl.com/
bdufbnc, Ottawa Linux Symp. 2007 BOFS material.

[44] Quest Software. (2009). Benchmark Factory for Databases [Online].
Available: http://www.quest.com/benchmark-factory/

[45] D. Woodhouse, “JFFS: The journalling flash file system,” in Proc.
Ottowa Linux Symp., 2001.

[46] C. Manning. (2010). How YAFFS Works [Online]. Available: http://
tinyurl.com/amu5ta9

[47] A. Hunter. (2008). A Brief Introduction to the Design of UBIFS
[Online]. Available: http://tinyurl.com/5c2anq

[48] J.Axboe,A.D.Brunelle, andN. Scott. (2006).Blktrace(8)—LinuxMain
Page [Online]. Available: http://linux.die.net/man/8/blktrace

[49] J. Kára, “Ext4, btrfs, and the others,” in Proc. Linux-Kongress Open-
Solaris Developer Conf., 2009, pp. 99–111.

[50] M. Xie and L. Zefan, “Performance improvement of btrfs,” in Proc.
LinuxCon Japan, 2011.

[51] Linux Kernel Newbies. (2011). Linux 3.0 [Online]. Available: http://
kernelnewbies.org/Linux_3.0

[52] J.Wilkes, R.Golding,C. Staelin, andT. Sullivan, “TheHPAutoRAID
hierarchical storage system,” ACM Trans. Comput. Syst., vol. 14,
pp. 108–136, 1996.

ChangwooMin received the BS andMS degrees
in computer science from Soongsil University,
Seoul, South Korea, in 1996 and 1998, respec-
tively. He is currently working toward the PhD
degree at Sungkyunkwan University, Suwon,
South Korea, and is a software engineer of Sam-
sung Electronics, Korea. His research interests
include storage system, virtualization, andparallel
processing.

Sang-WonLee received thePhDdegree from the
Computer Science Department, Seoul National
University, Korea, in 1999. He is an associate
professor with the College of Information & Com-
munication Engineering, Sungkyunkwan Univer-
sity, Suwon, Korea. He was a research professor
at Ewha Womans University and a technical staff
at Oracle, Korea. His research interest includes
flash-based database technology.

Young Ik Eom received the BS, MS, and PhD
degrees from the Department of Computer Sci-
ence and Statistics, Seoul National University,
Korea, in 1983, 1985, and 1991, respectively.
From 1986 to 1993, he was an associate profes-
sor at DankookUniversity, Yongin, Korea. Hewas
also a visiting scholar with the Department of
Information andComputer Science, theUniversity
of California, Irvine, from September 2000 to
August 2001. Since 1993, he has been a
professor at Sungkyunkwan University, Suwon,

Korea. His research interests include storage system, virtualization, cloud
system, and system securities.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MIN ET AL.: DESIGN AND IMPLEMENTATION OF A LOG-STRUCTURED FILE SYSTEM 2227

