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SUMMARY A concurrent FIFO queue is a widely used fundamental
data structure for parallelizing software. In this letter, we introduce a novel
concurrent FIFO queue algorithm for multicore architecture. We achieve
better scalability by reducing contention among concurrent threads, and
improve performance by optimizing cache-line usage. Experimental results
on a server with eight cores show that our algorithm outperforms state-of-
the-art algorithms by a factor of two.
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1. Introduction

Multicore architecture has been widely adopted from smart
phones to servers in data centers. A concurrent FIFO queue
is a widely used fundamental data structure for parallelizing
software to fully exploit capability of multicore architecture.
Efficient and scalable concurrent FIFO queue is critically
important to build high performance producer/consumer and
software pipeline architecture. Lamport [1] proposed a lock-
less concurrent FIFO queue. It uses a fixed size array
and supports single enqueuer and single dequeuer. Fast-
Forward [2] improved performance of the Lamport queue
by optimizing cache-line usage for modern multicore ar-
chitecture. Michael and Scott [3] introduced a lock-free
FIFO queue, called MS-queue, which uses singly linked list
and supports multiple concurrent enqueuers and dequeuers.
MS-queue updates Head and Tail using compare-and-swap
(CAS) atomic primitive. When a CAS operation fails be-
cause of contention among concurrent threads, it retries the
operation until succeeds. Because enqueue requires two
successful CAS operations whereas dequeue requires a sin-
gle successful CAS operation in order to complete, possi-
bility of CAS failure in enqueue is higher than that of de-
queue [4]. In modern multicore architectures, a CAS op-
eration costs an order-of-magnitude longer than a load or
store, since they require exclusive ownership and flushing
of the processors store buffer. Ladan-Mozes and Shavit [4]
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introduced a doubly linked list based lock-free FIFO queue,
called LS-queue, to reduce the possibility of CAS failure in
enqueue. They showed that reducing the number of CAS
failure improves performance and scalability.

In this letter, we propose a novel concurrent FIFO
queue. It uses singly linked list and supports multiple con-
current enqueuers and dequeuers. To achieve high perfor-
mance and scalability in multicore architecture, we propose
two schemes. First, we design an enqueue algorithm that
does not require retrying failed CAS. LS-queue reduces
possibility of CAS failure in enqueue when comparing it
to the MS-queue, but the number of failed CAS operations
is still high as we shown in Fig. 2 (b). Because our algo-
rithm needs to retry failed CAS operation only in dequeue,
it significantly reduces the number of failed CAS opera-
tions: it significantly improves performance and scalabil-
ity. Second, we further improve performance by reduc-
ing cache-line interference between enqueuer and dequeuer
unlike MS-queue and LS-queue. Since, in our algorithm,
Tail is read only by enqueuer and Head is read only by de-
queuer, there is no shared cache-line between enqueuer and
dequeuer: no cache-line interference between enqueuer and
dequeuer.

2. The New Queue Algorithm

We introduce two techniques for our new queue algorithm.
First, we fundamentally remove the need of retrying failed
CAS in enqueuer. Instead of CAS, we update Tail by using
fetch-and-store (FAS) primitive. FAS atomically updates a
memory location to a new value and returns the old value.
Most architectures including Intel x86, ARM, and PowerPC
support FAS primitive in hardware. Figure 1 depicts the flow
of enqueue and dequeue in the new algorithm. In enqueue
operation, it first atomically updates Tail to new node us-
ing FAS (E1), and then updates old Tail’s next to the new
node (E3). Since FAS primitive guarantees atomic update of
Tail, it is possible to enqueue without retrying even under

Fig. 1 The flow of enqueue and dequeue in the new algorithm.
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Fig. 2 Performance comparison for one enqueue-dequeue pair.

concurrent operations. Second, to avoid unnecessary cache-
line invalidation that incurs expensive cost in multicore ar-
chitectures, we propose a new technique to check whether
a queue is empty or not. Before enqueuing a new node, its
next is initialized to NULL . After Tail is updated to the new
node (E1), it updates the next of the new node to itself us-
ing CAS (E2). Thus, a node whose next points to itself is
the last node in the queue. We can easily recognize that a
queue is empty if the next of the Head node points to itself
(D2).

In dequeue operation, it first checks if the next of the
Head node is NULL (D1) and waits until it is changed to non-
NULL. That is because next is NULL while enqueue is in
progress. In case that the queue is not empty (D2), Head is
updated to the next using CAS (D3). If the CAS operation
succeeds, it returns the value. Otherwise, it retries the de-
queue operation. Since Head is updated and retried using
CAS, we therefore must deal with ABA problem [3]. We
use a tagging technique [3], [4] that associates a modifica-
tion counter with a pointer (pointer t) and increments it
in each successful CAS. In Algorithm 1, we describe the
new algorithm in detail.

3. Evaluation

We performed our experiments on a server that has 8 cores
(two Intel Xeon 5506 2.13 GHz Quad-core processors) with
Linux Kernel 3.0. All the experiments employ an initially
empty queue to which threads perform 10 million pairs of
enqueue and dequeue. We measured the time, the number
of failed CAS operations, and the number of cache miss
for one enqueue-dequeue pair. Figure 2 (a) shows that the
performance and scalability of the new algorithm is signifi-
cantly better than those of MS-queue and LS-queue. In case
of running 16 concurrent threads, MS-queue and LS-queue
are slower than the new algorithm by 195% and 188%, re-
spectively. As shown in Fig. 2 (b), the number of failed CAS
operations in the new algorithm is significantly lower, which
mainly contributes better performance and scalability. For
16 concurrent threads, the number of failed CAS operations
in MS-queue and LS-queue are greater by 225% and 198%,
respectively. As shown in Fig. 2 (c), the number of cache
miss in the new algorithm is significantly lower. For 16 con-
current threads, the number of cache miss in MS-queue and
LS-queue are greater by 189% and 204%, respectively.

Algorithm 1 The New Queue Algorithm
1: structure pointer t {ptr: pointer to node t, count: unsigned integer}
2: structure node t {value: data type, next: pointer t}
3: structure queue t {Head: pointer t cacheline aligned , Tail: pointer

to node t cacheline aligned }
4: procedure initialize(Q: pointer to queue t)
5: node = new node() � First node is a sentinel node.
6: node→next.ptr = node
7: Q→Head = Q→Tail = node
8: end procedure
9: procedure enqueue(Q: pointer to queue t, value: data type)

10: node = new node()
11: node→value = value
12: node→next.ptr = NULL
13: old tail = FAS(&Q→Tail.ptr, node)
14: CAS(&node→next.ptr, NULL, node)
15: old tail→next.ptr = node
16: end procedure
17: procedure dequeue(Q: pointer to queue t, pvalue: pointer to data

type)
18: loop
19: if Q→Head.ptr→next.ptr == NULL then
20: continue
21: end if
22: head = Q→Head
23: next = head→next
24: if head.ptr == next.ptr then
25: return FALSE
26: end if
27: if !CAS(&Q→Head, head, <next.ptr, head.count+1>) then
28: continue
29: end if
30: *pvalue = next.ptr→value
31: free(head→ptr)
32: break
33: end loop
34: return TRUE
35: end procedure

4. Conclusion

Concurrent FIFO queue is a fundamental data structure,
which is critical to high performance parallel software. We
proposed a concurrent FIFO queue algorithm that signif-
icantly improves performance and scalability by reducing
the number of failed CAS operations and optimizing cache-
line usage. Our experiments show the new algorithm out-
performs the state-of-the-art algorithms by factor of two.
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