
Dynamic-prelink: An Enhanced Prelinking Mechanism without
Modifying Shared Libraries

Hyungjo Yoon1,2, Changwoo Min1, and Young Ik Eom2

1Samsung Electronics, Suwon, Gyeonggi-do, Korea
2Sungkyunkwan University, Suwon, Gyeonggi-do, Korea

Abstract— Prelink accelerates the speed of program startup
by fixing the base address of shared libraries. However,
prelink prevents the dynamic linker from loading shared
libraries by using Address Space Layout Randomization
(ASLR) in runtime because it modifies the program header
in binary files directly.

To resolve this problem, we introduce an enhanced pre-
linking mechanism, called dynamic-prelink, which separates
the memory address layout per program as well as keeps
high performance of prelink mechanism. Dynamic-prelink
records prelinked contents to a file instead of modifying
shared libraries. This makes dynamic linker be able to use
both ASLR and prelink mechanism. Our experimental results
show that the memory address layout of dynamic-prelinked
programs is separated per program and the dynamic linker
is able to randomly load shared libraries regardless of
dynamic-prelinking. In addition, the startup time of dynamic-
prelinked program becomes faster than common program in
the dynamic linker, about 42% on average.

Keywords: Dynamic linker, Prelink, ASLR, Shared library, Pro-
gram startup

1. Introduction
The dynamic linker loads shared libraries and executables,

and relocates the memory address layout of each binary.
Since it affects every program on the system, dynamic
linking is critical in speeding up the program startup.

Prelink accelerates the booting time and program launch-
ing time in various operating systems. Jelínek[1] found that
prelink reduces processing time of dynamic linking by about
83%, when GTK+ applications are evaluated. In Android,
which is most popular system in mobile devices, prelink
reduces the booting time by 5%, in practice [2].

But prelink has significant drawbacks. Prelink and Address
Space Layout Randomization (ASLR) cannot be used si-
multaneously on a system [2][3][14][16]. ASLR randomizes
the layout of memory including stack, heap, library, and

• Young Ik Eom is the corresponding author of this paper.
• This research was supported by the MSIP (Ministry of Science, ICT&Future

Planning), Korea, under the ITRC (Information Technology Research Cen-
ter) support program (NIPA-2014(H0301-14-1020)) supervised by the NIPA
(National IT Industry Promotion Agency).

executable for enhanced security level of system. According
to this, it is difficult for an attacker to expect the randomized
address of processes, and so attacks can be defeated ulti-
mately. ASLR is valuable for defending control flow hijack-
ing attacks and return-to libc (RTL) attacks [2][4][5][12].

In order to enhance the secure execution, the recent
operating systems adapt ASLR rather than applying prelink.
Android supported prelink up to the version of Ice-cream
4.0, but it supports ASLR in current version [10]. Several
linux’s distributions support PaX’s implementation of ASLR
by default [15]. Windows supports ASLR from Windows
Vista [11], and Mac OS X and iOS supported the preload
mechanism similar to prelink in the past, but ASLR is
supported from the version of Mac OS X 10.8 and iOS 4.3
in the entire system [8][9].

Prelink is partially adopted per program or it is adopted
in the whole system. In case that prelink is adapted per pro-
gram, prelinked program should not influence the launching
procedure of the other programs. But a prelinked program
prevents the dynamic linker from loading common programs
using ASLR on the operation system due to modifying
shared libraries directly. Prelink switches the base address,
which is described as PT_LOAD segment in program header,
from zero to a new value [1]. Thereafter, the dynamic
linker let mmap() load libraries into arbitrary address in the
memory by referencing PT_LOAD segment. If PT_LOAD
is not equal to zero and the indicated address is allocable
memory space, the kernel allocates a binary in virtual
address of PT_LOAD [6][7]. Therefore, the dynamic linker
cannot always load shared libraries related to prelinking
in random address if a prelinked program exists on the
system. For example, we assume that a program is already
prelinked. The dynamic linker always loads libc.so in the
same address for every process due to fixed libc.so’s program
header, and then applying ASLR is limited. This causes a
security problem under RTL attacks in which attacker injects
malicious codes into the fixed address of libc.so [4].

To resolve this problem, we introduce novel prelinking
mechanism, called dynamic-prelink, which separates the
memory address layout per program as well as keeps high
performance of prelinking mechanism. Our scheme separates
the memory address layout per program and records pre-
linked contents to a file instead of modifying shared libraries.
We make the following contributions in this paper.



• We find an efficient mechanism that maintains the per-
formance of prelink and supplements prelink’s weak-
nesses.

• We design an enhanced prelinking mechanism to per-
form prelinking without modifying shared library.

• We discuss the challenges to handle the separate
memory address layout for each prelinked program.

We evaluate our dynamic-prelinking mechanism by com-
paring the performance of dynamic linker during starting
each application which applies dynamic-prelink, ASLR, and
original prelink. We get a result that dynamic-prelink is
better than ASLR, about 42% on average. Moreover, we also
check the memory address layout of the loaded program that
is generated by the dynamic-prelinking mechanism to prove
that programs can be loaded using both dynamic-prelink and
ASLR on a system.

In the rest of the paper, we analyze the overhead of
dynamic linker and the effect of prelink in Section 2. Section
3 introduces the design idea of dynamic-prelink, and we
address the implementation of dynamic-prelink in Section
4. Section 5 evaluates the implementation and discusses the
effect of dynamic-prelink. Section 6 concludes and discusses
future works.

Fig. 1: Execution time during executable’s launching.

Fig. 2: Spent time in the dynamic linker according to the
number of relocations.

2. Analysis of the dynamic linker and
prelink

Most of time in the dynamic linker is spent in file I/O,
relocations handling, and symbol lookups to load binaries

Fig. 3: Spent time in the dynamic linker according to the
number of symbol lookups.

Fig. 4: Comparison of spent time in the dynamic linker
during prelinked executable’s launching and original exe-
cutable’s launching.

such as libraries and executables [1]. Every time, this op-
eration is applied to memory pages which is written to be
loaded into the memory when program is started through
exec() in the dynamic linker [1]. The dynamic linker is
hard to enhance the performance by controlling file I/O,
but relocations handling and symbol lookups are able to
be handled by the dynamic linker. So developing algorithm
to reduce spent time of relocations handling and symbol
lookups is rather efficient to enhance the performance of
dynamic linker. Increase in the number of relocations and
the number of shared libraries make the dynamic linker
spend more time to search symbol scope and do symbol
lookups [1]. Additional factor increasing cost is the length
of symbol names mangled by C++. It makes the dynamic
linker spend more time to find symbols due to increasing
cost of comparing symbols. GUI programs become more
and more important in recent most of the desktop platforms
and the mobile platforms. Additionally, the complexity of
program is also increasing. It means future programs will
contain more libraries, larger relocations, more symbols and
longer the length of symbol [1].

But there is limitation to enhance the performance of
dynamic linker although efficient algorithm is designed. It
cannot make the number of relocations and the number
of symbol lookups be decreased. In terms of same ELF



binaries, it is hard to reduce the number of relocations and
the number of symbol lookups.

Both Figure 2 and Figure 3 show how the number of
relocations and the number of symbol lookups influence the
performance of dynamic linker in Intel i3 dual core 1.2GHz.
Those show that spent time in the dynamic linker linearly
increases according to enlarging the number of relocations
and the number of symbol lookups. Prelink executes reloca-
tion handling and the Global Offset Table (GOT) resolving in
advance to enhance effectively the performance of dynamic
linker. Prelink is able to complete relocations except some
relocation related dlopen() and conflicted information [1]. It
is absolutely better method in terms of only the performance.
To verify the performance of prelink in current computing
environment, we tried to compare the performance of pre-
linked program with original program. We divided the main
activity of dynamic linker up into two types of sections:
spent time in the dynamic linker before calling executable’s
main() (Figure 1c) and spent time for symbol lookup to
resolve the GOT during starting the program (Figure 1d).
Startup time (Figure 1c) in the dynamic linker is almost spent
for file I/O (Figure 1b) and relocations handling (Figure 1a).
We assumed that the total of spent time in the dynamic
linker during starting the program is the sum of spent time
of two type of sections (startup time in the dynamic linker
and symbol lookup time). Figure 4 shows the speed of
dynamic linker that loads prelinked program is faster than
the speed for original program about 60% on average and
the performance is enhanced in all of tested 14 applications.
As a result, prelink is still effective method in terms of the
performance of dynamic linker.

Table 1: The ratio of sections related the relocation in PIC
libc.so(byte) libstdc++.so(byte)

(A) Modified area 60260 104460

(B) Whole loaded area 1724620 904164

(C) Ratio (B/A)*100 3.4% 11.5%

3. Design of the dynamic-prelink
Most shared libraries are generated to the position-

independent code (PIC) ELF. The objective of PIC is to
maximize sharing the code of shared libraries and to save
the memory space. The section of ELF binary built in
the PIC is divided up into three types of sections; the
location-independent section, the location-sensitive section,
and the relocation section [13]. The relocation section
holds information related the location-sensitive section. The
dynamic linker adjusts the location-sensitive section using
the relocation section during starting the program. Prelink
finishes relocating operation by adjusting shared library’s
sections related the relocation ahead of time. It helps the
dynamic linker save time in runtime because relocation and

Fig. 5: The whole architecture of dynamic-prelink.

resolving the GOT are already finished. Table 1 shows the
ratio of shared library’s sections that are modified by prelink.
The ratio of modified sections is not greater in and out 10%
although there is difference depending on the property of
shared library.

We get an idea from what the ratio of relocated section
is very small. Our main idea is to record a relocated data
to a new binary file instead of directly modifying shared
libraries at prelinking time (Figure 5). So we design a
new cache file, named dynamic-prelink cache file, to record
relocated data per program. Dynamic-prelink can bring two
benefits, compared with prelink. First, dynamic-prelink can
create independent and random address layout per program
although several programs are prelinked. Second, programs
are not adopted by dynamic-prelink can be loaded normally
using ASLR because dynamic-prelink do not modify shared
libraries.

To support this idea, additional function is needed in the
dynamic linker. So we design a new dynamic linker, called
ldp.so, has the same function with original dynamic linker
as well as new function supporting our idea. ldp.so is able
to decode dynamic-prelink cache file and copy relocated
data into the memory during the program startup. Moreover,
ldp.so can distinguish dynamic-prelinked programs using
dynamic-prelink cache file and determine the method for
program loading (dynamic-prelink or ASLR) in the runtime.

4. Implementation
To verify the feasibility of dynamic-prelinking mecha-

nism, we implemented dynamic-prelink and a new dynamic
linker in the ubuntu 12.04. We contribute that dynamic-
prelink independently creates the memory address layout
of each prelinked program. It supports that non-prelinked
program can be loaded using ASLR. Moreover, the new
dynamic linker is developed to support dynamic-prelinking



mechanism. We start with a discussion about implementation
for the dynamic-prelinking mechanism and the new dynamic
linker.

4.1 Dynamic-prelinking
Dynamic-prelink has two important points about imple-

mentation. First, dynamic-prelink cache file is created to
help dynamic linker load the program fast. Dynamic-prelink
collects and records a prelinked data, called a cached data,
to dynamic-prelink cache file when it executes prelinking.
ldp.so copies the cached data to proper location using
dynamic-prelink cache file during starting the program. Sec-
ond, dynamic-prelink randomly makes the memory address
layout per program. It is possible that dynamic-prelink does
not modify shared libraries directly. So the base address
of shared libraries is assigned randomly, and the memory
address layout of each dynamic-prelinked program becomes
unique on the system.

Fig. 6: The format of dynamic-prelink cache file.

Table 2: The list of cached sections
Section name Type

.dynsym SHT_DYNSYM

.rel.dyn SHT_REL

.rel.plt SHT_REL

.dynamic SHT_DYNAMIC

.got SHT_PROGBITS

.got.plt SHT_PROGBITS

.data SHT_PROGBITS

.data.rel.ro SHT_PROGBITS

.__libc_thread_subfreeres SHT_PROGBITS

.__libc_atexit SHT_PROGBITS

.__libc_subfreeres SHT_PROGBITS

.init_array SHT_INIT_ARRAY

.fini_array SHT_FINI_ARRAY

.tdata SHT_PROGBITS

4.1.1 Dynamic-prelink cache file format

dynamic-prelink cache file is a binary which is recorded
by the cached data of the location-sensitive section and
the relocation section. This file is designed to manage
the list of dependent shared libraries of the program and
the cached data of each shared libraries. Figure 6 shows
how dynamic-prelink cache file format is designed. It is
composed to the field of app_cache_entry, app_cache_entry,
app_cache_header, section_header, cached section, and
hash map. The characteristic of each field is as follows.

• app_cache_entry: This structure gives the
offset of first index of app_cache_header, the
size of app_cache_header, and the number of
app_cache_header. It helps dynamic linker find all of
index of app_cache_header.

• app_cache_header: This structure gives a cached object
of each shared library. Each object gives the offset
of root header for cached sections and the number of
cached sections, those help dynamic linker find all of
index of section_header.

• section_header: This structure gives relative offset for
the cached data and the copied virtual address. The
format of structure is the same with Elfxx_Shdr of ELF.

• cached section: This is the set of cached data which
is recorded by dynamic-prelink ahead of time. The
dynamic linker can directly copy it into the memory
instead of relocating operation.

• hash map: This element holds the offset of
app_cache_header hash table to search fast object
related shared object.

We try to distinguish the type of sections to select the
cached data. The list of location-sensitive sections and the
list of relocation sections are found by comparing original
shared library with prelinked shared binary. Both vimdiff
and objdump, which are utilities, are used to find the list
of relocated sections. Table 2 shows the list of location-
sensitive sections and relocation sections. Mainly, those
sections are recorded to the cached data of dynamic-prelink
cache file.

The dynamic linker does not adjust both position inde-
pendent sections and irrelevant-relocation sections such as
.text, .eh_frame. But common executable is not built in
PIC, is the type of ET_EXEC. It means that all sections
of executable are able to be adjusted by the dynamic linker
during starting the program. It is impossible to keep the
cached data to dynamic-prelink cache file. But the address
of ET_EXEC’s program header is fixed during the link
processing at the compile time, the executable is loaded at
a known location always. In other words, the executable is
originally impossible to be loaded by using address random-
ization. So dynamic-prelink directly modifies the executable



in dynamic-prelinking time because it does not affect the
other programs.

Fig. 7: The size of .rel.dyn section is enlarged 1.5 times
before and after prelinking due to changing REL to RELA
and the relative offset of rel.plt is influenced by RELA.

Fig. 8: Comparison with the memory address layout accord-
ing to the loading mechanism. The location of RELA section
is moved at the last address of loaded memory space of each
shared libraries.

4.1.2 RELA section
we start with assumption that the data segments to be

page-aligned and relative offset of shared library are identical
before and after prelinking. If there becomes right assump-
tion, the size of sections, which are loaded in the memory,
is coincided before and after prelinking. But, in some cases,
prelink changes DT_REL to DT_RELA which is the prop-
erty of relocation section. RELA makes relocating operation
be easy because it does not need the relocated contents in
the memory [1]. Elfxx_Rela contains more a member which
is an explicit addend compared with Elfxx_Rel, and the size
of DT_RELA is 1.5 times larger than DT_REL. Moreover,
DT_RELA is commonly located in an intermediate position
of the binary file. Figure 7 shows the size of .rel.dyn section
is enlarged after prelinking, and the relative offset of rel.plt is
changed. It is big problem to mechanism of dynamic-prelink
due to the page alignment.

But we make one important observation about the relo-
cation section. The relocation section only contains infor-
mation about which data is relocated in runtime, and it is
independent against relative offset in the binary. Namely, it
is not important where the relocation section is located. The

dynamic linker commonly gets the location of relocation sec-
tion from PT_GNU_RELRO of program header. A program
can be normally operated if the location of relocation section
is identical to the address of PT_GNU_RELRO regardless
relative offset of relocation section. So we design that
dynamic-prelink changes the address of PT_GNU_RELRO
to the last address of loaded binary in case of generating
DT_RELA. Figure 8 compares the section alignment of each
loaded shared libraries (original shared library, prelinked
shared library, dynamic-prelinked shared library) into the
memory. Prelink makes the size of shared library’s .rel.dyn
be enlarged against original shared library. But dynamic-
prelink can maintain identical alignment with original shared
library by locating the RELA in the last address of mapped
memory.

4.1.3 Randomization of dynamic-prelink

when dynamic-prelink does prelinking for any program, it
is possible to randomly determine the base address of shared
library using /dev/random. Dynamic-prelink sets up various
prelinked memory address layout per program. Because an
address layout of program becomes unique on the system,
the randomization of dynamic-prelink makes it more difficult
to analysis the loaded address of shared libraries.

4.2 New dynamic linker: ldp.so
The new dynamic linker (ldp.so) supplements additional

feature for the dynamic-prelinking mechanism. First, ldp.so
is able to decode dynamic-prelink cache file format and
copy the cached data to proper address instead of original
dynamic linker mechanism. Second, the program, which is
not adopted by dynamic-prelink, is loaded normally us-
ing ASLR following original dynamic linker mechanism.
ldp.so is able to distinguish dynamic-prelinked programs by
checking dynamic-prelink cache file. Moreover, in case of
adding new rules, ldp.so is able to dynamically determine the
loading mechanism (ASLR or dynamic-prelink) in dynamic-
prelinked program startup.

Fig. 9: Modified executable’s .interp by dynamic-prelink.

Fig. 10: ldp.so is loaded in running dynamic-prelinked
program, but ld.so is loaded in running common program.



When the kernel loads and executes a process in newly
constructed address space, the kernel checks the dynamic
linker first in executable’s .interp section. In user-mode, first
context of process is started in the entry point of dynamic
linker. The dynamic linker is also the shared library (ld.so),
but it is hard to control the memory address layout of ld.so
using the dynamic-prelinking mechanism. It is because there
is no chance to control the memory address layout of ld.so
in user-mode. To solve this problem, we make important
modification to the dynamic liker and the executable. First,
a new dynamic linker (ldp.so) is created without modifying
ld.so, and we induce that the system becomes to own two
dynamic linkers (ld.so and ldp.so). ldp.so is directly modified
in order to complete the relocation by dynamic-prelink in
advance. Second, executable’s .interp section is modified to
make the kernel load ldp.so as the dynamic linker. Figure 9
shows executable’s .interp section is changed to ldp.so by
dynamic-prelink. After all, programs, which are not adopted
by the dynamic-prelinking mechanism, are loaded by origi-
nal dynamic linker (ld.so) and dynamic-prelinked programs
are loaded by ldp.so as the dynamic linker. Figure 10 shows
that two dynamic linkers are able to be loaded according to
a mechanism adopted in program.

5. Evaluation
We start with a discussion to evaluate our dynamic-

prelinking mechanism by comparing the performance of
dynamic linker during starting the program and verifying
the memory address layout of program which is generated
by dynamic-prelink.

Fig. 11: Spent time before enter executable’s main() (Fig-
ure 1c) in the dynamic linker during 14 applications startup:
original prelinked program, dynamic-prelinked program,
original program.

5.1 Performance
We verified the effect of dynamic-prelink by evaluating

spent time in the dynamic linker in Intel i3 dual core
1.2GHz. We also divide the main activity of dynamic linker
up into two type of sections: spent time in dynamic linker
before calling executable’s main() (Figure 1c) and spent
time in symbol lookups to resolve the GOT during starting

Fig. 12: Spent time to resolve the GOT (Figure 1d) in
the dynamic linker during 14 applications startup: origi-
nal prelinked program, dynamic-prelinked program, original
program.

Fig. 13: Whole spent time in the dynamic linker during
startup of original prelinked program, dynamic-prelinked
program, and original program. This data is the sum of spent
time before enter executable’s main() (Figure 1c) and spent
time to resolve the GOT (Figure 1d).

the program (Figure 1d). We compared the performance
of original prelink, ASLR (RTLD_LAZY loading), and
dynamic-prelink by adding to dual data (We think this is the
performance of dynamic linker during starting the program).
Figure 13 shows the speed of the dynamic linker using the
dynamic-prelinking mechanism is faster than ASLR, about
42% on average, and it is slower than original prelink,
about 32% on average. The performance of dynamic-prelink
presents intermediate position between ASLR and original
prelink. This result is influenced by dynamic-prelink cache
file. Dynamic-prelink needs additional time for file I/O
and memory copy to control dynamic-prelink cache file.
Figure 11 shows spent time in the dynamic linker to load
dynamic-prelinked program (Figure 1c) is increased more
than original prelinked program. But we should concentrate
on saved time in comparison with ASLR. Dynamic-prelink
can save relocating time which is similar to original prelink.
So the speed of dynamic-prelink is enhanced in both spent
time before calling executable’s main() (Figure 11) and spent
time to resolve the GOT (Figure 12) in the dynamic linker.
Especially, spent time to resolve the GOT of dynamic-prelink
is similar to these of original prelink. (Although a program



is prelinked, dynamic linker should resolve the GOT due
to dlopen()). Namely, the performance of dynamic-prelink
is better than ASLR and is similar to prelink except the
overhead of dynamic-prelink cache file.

Table 3: Fixed address layout of shared libraries of two
dynamic-prelinked programs. Dynamic-prelinked programs
own different address layout each other.

application library 1st address 2nd address

soffice ldp.so 0x80000000 0x80000000

libc.so 0x41967000 0x41967000

libstdc++.so 0x41fd1000 0x41fd1000

nautilus ldp.so 0x80000000 0x80000000

libc.so 0x4b6d5000 0x4b6d5000

libstdc++.so 0x4be77000 0x4be77000

Table 4: The memory address layout of loaded programs
using ASLR in running programs which are adopted by
dynamic-prelinking mechanism.

application library 1st address 2nd address

chrome ld.so 0xb5efe000 0xb5f3a000

libc.so 0xaf9f2000 0xafa2e000

libstdc++.so 0xafbe6000 0xafc22000

firefox ld.so 0xb7726000 0xb770c000

libc.so 0xb740a000 0xb73f0000

libstdc++.so 0xb7619000 0xb75ff000

5.2 Memory address space layout
We verified the memory address space layout of processes

based on a dynamic-prelinked programs and non-dynamic-
prelinked programs using /proc/[pid]/maps to prove that
two mechanisms (ASLR and dynamic-prelink) are able
to be used on a system at the same time (Table 3, 4).
And we checked to hold different memory address layout
per program which is adopted by the dynamic-prelinking
mechanism (Table 3). Table 3 shows libc.so and libstdc++.so
are located in different address in running processes based
on two dynamic-prelinked programs, and ldp.so is loaded
instead of ld.so. It means that dynamic-prelink separates
address layout of two programs. ldp.so is always located
in the same address due to the effect of dynamic-prelink.

Another important point is that both libc.so and lib-
stdc++.so of non-dynamic-prelinked programs are loaded
using ASLR at same time in running processes based
on dynamic-prelinked program (Table 4). As a result, the
dynamic-prelinking mechanism does not affect the memory
address layout of non-dynamic-prelinked program. Besides,
the memory address layout of dynamic-prelinked program is
separated with it of the other dynamic-prelinked programs.

6. Conclusion
Dynamic-prelink makes the dynamic linker be able to use

mechanism of both ASLR and prelink at the same time.
Moreover, it helps dynamic-prelinked program be loaded
faster than common program in the dynamic linker, about
42% on average. Since dynamic-prelink supports indepen-
dent prelinking without modifying the shared libraries, a
dynamic-prelinked program does not affect the memory
address layout of the other programs. And dynamic-prelink
prevents exposing process’s address space layout to the other
programs. In addition, each program is able to be prelinked
selectively according to program’s importance by combining
several security mechanisms to enhance system performance.

In this paper, we do not discuss position independent ex-
ecutable (PIE) for dynamic-prelink. Original prelink cannot
support PIE prelinking due to modification of binary. But
we have a plan to adapt dynamic-prelink to PIE. Because
dynamic-prelink does not modify shared libraries, we expect
that PIE can be prelinked by dynamic-prelink. In addition,
we will solve a issue about the fixed base address of new
dynamic linker (ldp.so). We anticipate that ldp.so is loaded
into random address as well as dynamic linkers (ld.so,
ldp.so) can be unified to one component by modifying
kernel’s exec() mechanism.

References
[1] Jelinek, Jakub. Prelink. Technical report, Red Hat, Inc., 2004. available

at http://people.redhat.com/jakub/prelink. pdf, 2003.
[2] Bojinov, Hristo, et al. "Address space randomization for mobile de-

vices."Proceedings of the fourth ACM conference on Wireless network
security. ACM, 2011.

[3] van Veen, Sander Mathijs. "Concurrent Linking with the GNU Gold
Linker." (2013).

[4] Shacham, Hovav, et al. "On the effectiveness of address-space ran-
domization."Proceedings of the 11th ACM conference on Computer
and communications security. ACM, 2004.

[5] Spengler, Brad. "Pax: The guaranteed end of arbitrary code execution."
(2003).

[6] Loosemore, Sandra, et al. The GNU C libraryreference manual. Free
software foundation, 2001.

[7] Chamberlain, Steve, and Ian Lance Taylor. "Using ld: the GNU Linker."
(2003).

[8] "Apple OS X Mountain Lion Core Technologies Overview". June 2012.
Retrieved 3 December 2013.

[9] Dai Zovi, Dino A. "Apple iOS 4 security evaluation." Black Hat USA
(2011).

[10] "Android Security". Android Developers. Retrieved 9 December 2013.
[11] Windows, I. S. V. "Software Security Defenses." (2012).
[12] Payer, Mathias. "Too much PIE is bad for performance." (2012).
[13] Tool Interface Standards Committee. "Executable and Linkable For-

mat (ELF)." Specification, Unix System Laboratories (2001).
[14] John Moser. Prelink and address space randomization, 2006.

http://lwn.net/Articles/190139/.
[15] De Raadt, Theo. "Exploit mitigation techniques." (2005).
[16] Xu, Haizhi, and Steve J. Chapin. "Improving address space random-

ization with a dynamic offset randomization technique." Proceedings
of the 2006 ACM symposium on Applied computing. ACM, 2006.


