
J. Kim et al.: Reducing Excessive Journaling Overhead with Small-Sized NVRAM for Mobile Devices 217

Contributed Paper
Manuscript received 03/27/14
Current version published 06/23/14
Electronic version published 06/23/14. 0098 3063/14/$20.00 © 2014 IEEE

Reducing Excessive Journaling Overhead
with Small-Sized NVRAM for Mobile Devices

Junghoon Kim, Changwoo Min, and Young Ik Eom

Abstract — Journaling techniques are widely used to

guarantee file system consistency of battery-powered mobile
devices such as smartphones and tablets. In a journaling file
system, system recovery is facilitated by first writing updated
data blocks to a journal area and then periodically writing
them to their home locations. However, these duplicated
writes degrade the performance and shorten the lifetime of
NAND flash storage in mobile devices. In particular, a
lightweight database library, which is mainly used to manage
application data in mobile devices, is a major cause of
excessive journaling because it frequently triggers the costly
file synchronization to guarantee the atomicity of
transactional execution and thus generates a significant
amount of synchronous random write traffic. This paper
presents a novel journaling scheme, called Delta Journaling
(DJ), to resolve this problem efficiently by using small-sized
nonvolatile random access memory (NVRAM). DJ is based on
a unique update pattern found in mobile devices, where file
system updates are mostly very small. By exploiting the byte-
addressable and the nonvolatile characteristics of NVRAM,
DJ stores a journal block as a compressed delta in the small-
sized NVRAM only when the compressed delta is small
enough. Experimental results show that DJ outperforms a
traditional journaling file system by up to 16.8 times for
synthetic workloads. For a real-world workload, it enhances
transaction throughput by 25.5% and 29.2% in ordered and
journal modes, respectively, with only 16 MB NVRAM. Also,
DJ enhances the lifetime of NAND flash storage by
eliminating almost all journal writes without any loss of
reliability.1

Index Terms — Journaling file system, NAND flash storage,
NVRAM, Reliability

I. INTRODUCTION

File system reliability is one of the most crucial concerns

1 This work was supported by the IT R&D program of MKE/KEIT

[10041244, Smart TV 2.0 Software Platform]. This research was supported by
the MSIP (Ministry of Science, ICT & Future Planning), Korea, under the
ITRC (Information Technology Research Center) support program (NIPA-
2013-H0301-13-4006) supervised by the NIPA (National IT Industry
Promotion Agency).

Junghoon Kim and Young Ik Eom are with the College of Information and
Communication Engineering, Sungkyunkwan University, 2066, Seobu-ro,
Jangan-gu, Suwon 440-746, South Korea. (e-mail: myhuni20@skku.edu,
yieom@skku.edu).

Changwoo Min is with the Software Center, Samsung Electronics, 129,
Samsung-ro, Yeongtong-gu, Suwon 443-742, South Korea. (e-mail:
changwoo.min@samsung.com).

when designing file systems for battery-powered mobile
devices, such as smartphones and tablets, because sudden
power failure is more likely to occur. Journaling is a standard
technique used in mobile device to restore a file system to a
consistent state [1], [2]. In a journaling file system, system
recovery is facilitated by first writing updated data blocks to a
journal area and then periodically writing them to their home
locations (i.e., their original locations). However, these
duplicated writes degrade the performance and shorten the
lifetime of NAND flash storage, especially in mobile devices
where NAND flash memory is used for main data storage as a
result of several limitations of NAND flash hardware [3], [4].
First, once a page is programmed, the page must be erased in
order to write new data in the same place. Moreover, an erase
operation takes about 10 times longer than a write operation
because NAND flash memory can be erased only in the unit
of a block, which is much larger than a page [5], [6]. Thus,
this erase-before-write constraint makes the cost of a write
operation that is much higher than that of a read operation.
Second, NAND flash memory has limited program/erase
cycles. Usually, multi-level cell (MLC) NAND flash memory
guarantees about 10,000 erase cycles for each block, and
triple-level cell (TLC) NAND flash memory guarantees only
about 1,000 erase cycles [5].
 In order to reduce the journaling overhead, previous studies
have proposed various solutions [7]-[10]. However, these
solutions still have limitations. Choi et al. [7] proposed a
journal remapping technique that remaps addresses of the
logged journal data to addresses of the home locations instead
of writing the updated blocks once more to the NAND flash
storage. However, when writing data or metadata to NAND
flash storage upon a periodic flush or upon a synchronization
request such as an fsync system call, the updated blocks must
be written to a separate journal area synchronously, regardless
of the size of updates. Lee et al. [8] proposed a buffer cache
architecture that uses nonvolatile random access memory
(NVRAM), such as phase-change memory (PCM) or spin-
transfer torque magnetic RAM (STT-MRAM), as the union of
buffer cache and journal area. However, it is difficult to
implement this solution for mobile devices due to the limited
density of NVRAM [11]. Moreover, the installation of larger
NVRAM chips in mobile devices, such as smartphones and
tablets, entails higher material costs, and so it deteriorates the
competitiveness of the products in the markets. Lee et al. [9]
proposed a journaling file system that reduces the amount of
writes produced during journaling by exploiting the byte-

218 IEEE Transactions on Consumer Electronics, Vol. 60, No. 2, May 2014

accessibility of PCM. However, this solution can only be
applied to a system that specifically uses PCM as the main
data storage. Kim et al. [10] proposed a journaling technique
for a lightweight database library. However, this solution can
only be applied to a database library that is specifically
implemented in the rollback journal mode, instead of the
write-ahead log mode.

This paper proposes a novel journaling scheme, called
Delta Journaling (DJ), to reduce journaling overhead in
mobile devices by using small-sized NVRAM efficiently. DJ
uses two separate journal areas, one in the NAND flash
storage and another in the NVRAM, and it exploits the byte-
addressable and the nonvolatile characteristics of NVRAM.
Before writing an updated block to the journal area, DJ first
calculates the difference (i.e., the delta) between the updated
and the original blocks. If the compression ratio of the delta is
high, only the compressed delta is logged in the delta journal
area of the NVRAM. Otherwise, the updated block is written
to the journal area of the NAND flash storage. Alternatively, it
is also possible to write the compressed delta to the NAND
flash storage layer [11], [12]. In this case, computing cost and
power consumption are high because all updated blocks must
be taken into account when compressing the delta without
knowing the file system level semantics. Also, it is ineffective
to implement additional hardware for the delta compression
[11] or to use a less powerful internal microprocessor in the
NAND flash storage [12]. On the other hand, DJ only
considers overwrite blocks for the delta compression by
exploiting file system level semantics, and also, it can reduce
the compression time by using a more powerful host processor.
DJ is especially efficient in mobile devices, where file system
updates are mostly very small.

Fig. 1. Cumulative distribution of the differences between updated and
original blocks.

 A previous study showed that a lightweight database library,
which is mainly used for managing mobile application data,
generates approximately 80% of the writes in a mobile device
[3]. The lightweight database operation frequently triggers the
fsync system call to guarantee data consistency. The frequent

fsync calls incur excessive journaling and thus negatively
impact overall system performance [13], [14]. Fig. 1 shows
the cumulative distribution of the differences between updated
and original blocks while running the TPC-C benchmark with
a lightweight database library. More than 70% of updated
blocks have less than 10% difference (i.e., the size of the
difference when compared to the original block is smaller than
400 bytes). This observation implies that DJ, which uses
small-sized NVRAM as the journal area for the compressed
delta, can greatly improve the performance and the lifetime of
NAND flash storage in mobile devices.

The remainder of this paper is organized as follows: Section
II presents related work, Section III describes the detailed
design of DJ, Section IV presents the experimental results,
and finally, Section V concludes the paper.

II. RELATED WORK

DJ can greatly reduce the journaling overhead in mobile
devices by exploiting the byte-addressable and the nonvolatile
characteristics of NVRAM. In this regard, the two types of
existing technologies that are most closely related to DJ are
the NVRAM/NAND flash hybrid architectures [5], [11], [15]-
[19] and techniques for reducing the journaling overhead [7]-
[10]. This section briefly presents each work and compares it
to DJ.

A. NVRAM/NAND Flash Hybrid Architecture

The NVRAM/NAND flash hybrid architecture utilizes the
byte-accessibility and in-place update characteristics of
NVRAM to complement the hardware limitations of NAND
flash storage. The first approach employs a log region in PCM,
storing the updates of data pages in the form of logs [15]. The
log region allows in-place updates so that frequent, small
updates can be effectively absorbed. However, when large
updates are performed, this approach increases write latency
because the read/write latency of PCM is slower than that of
NAND flash memory for large data [20]. In contrast, DJ stores
a compressed delta in the NVRAM only when the compressed
delta is small enough. The second approach employs NVRAM
as a metadata storage component [5], [16]-[19]. In general,
file system metadata is frequently updated and only a few
bytes are actually modified. Thus, in order to reduce excessive
garbage in NAND flash memory, the metadata storage
component stores file system metadata in PCM [5], [16]-[18]
or synchronously stores the metadata updates as logs in
NVRAM [19]. In contrast, DJ considers both file system data
and metadata for the delta compression by exploiting a small
update pattern in mobile devices. The third approach uses
PCM as a buffer space in a storage device [11]. However, this
approach requires additional hardware for the delta
compression and cannot be applied to traditional log-
structured file systems [21], [22] because it does not know file
system level semantics. In contrast, DJ uses a more powerful
host processor and exploits file system level semantics for the
delta compression.

J. Kim et al.: Reducing Excessive Journaling Overhead with Small-Sized NVRAM for Mobile Devices 219

B. Technique for Reducing Journaling Overhead

Modern file systems in mobile devices use journaling to
guarantee the consistency of both file system data and
metadata [1], [2]. In journaling file systems, file system
updates are first recorded in a separate journal area before
being written back to their home locations in case the system
needs to perform a recovery. However, journaling has
considerable overhead because the same file system changes
are written to the storage device twice.

Choi et al. [7] proposed a journal remapping technique that
remaps addresses of the logged file system changes to addresses
of the home locations of the changes. With this technique, the
journal pages are altered into updated pages of the file system,
so additional writing to NAND flash storage is prohibited.
However, when writing the updates to NAND flash storage
upon periodic flush or upon synchronization request, the
updated blocks must be written to a separate journal area of the
NAND flash storage synchronously, regardless of the size of
updates. Lee et al. [8] proposed a buffer cache architecture that
subsumes the function of caching and journaling in a unified
NVRAM space. Blocks in the buffer cache are converted to
journal logs by using in-place commit technique, so the
frequency of storage accesses can be reduced. However, it is
difficult to apply this solution in mobile devices due to limited
density and high cost of NVRAM [11]. In contrast, DJ stores
journal data as a compressed delta in the NVRAM when a high
compression ratio is achieved. Thus, DJ can greatly reduce the
synchronous writes of journaling in mobile devices with only a
small-sized NVRAM.

Lee et al. [9] proposed a journaling file system that reduces
the amount of journal writes considering the PCM
characteristics. However, that system is designed for devices
where NVRAM is used for main data storage. In contrast, DJ
focuses on use in mobile devices, where NAND flash memory
is used for main data storage. Kim et al. [10] proposed a
journaling technique for a lightweight database library. Before
reflecting new data to the original location of the database
files, the lightweight database library creates a rollback
journal file that maintains the original data for system
recovery. To improve storage performance, the proposed
technique places the rollback journal file in NVRAM. In
contrast, DJ can be applied to all files, including database files,
because it is designed at the file system level.

 The previous version of DJ [23] stores journal data as a
compressed delta in a small-sized NVRAM only when the
compressed delta is small enough. Through this, DJ can reduce
the excessive journaling overhead in mobile devices. Although
it utilizes a small-sized NVRAM as a delta journal area
efficiently, it does not consider the optimal checkpoint threshold
of NVRAM, and thus, it cannot fully utilize the NVRAM space.
Also, there are more opportunities to optimize the journaling
performance. In this regard, the current version of DJ finds out
the optimal checkpoint threshold of NVRAM and extends
targets to include the journal descriptor (JD)/journal commit
(JC) block to provide better performance.

III. DESIGN OF DELTA JOURNALING

This section first describes the overall architecture of the
proposed system, and then, the detailed design of DJ is
described in the following sequence: difference capturing, delta
compression, NVRAM management, and system recovery.

A. System Overview

Fig. 2 shows the overall architecture of the proposed system.
In the proposed system, the buffer cache acts as a transparent
cache for storage-backed pages, and it is kept in the DRAM
for fast access. To reduce the journaling overhead, a small-
sized NVRAM is connected to a memory bus supporting byte-
level access. NAND flash storage is used as main data storage
in the proposed system.

Fig. 2. Overall architecture of the proposed system.

Similarly to the original journaling technique, DJ also

performs commit and checkpoint operations. The commit
operation writes the updated data to the journal area for potential
use during system recovery upon a periodic flush or upon a
synchronization request, such as fsync system call, and the
checkpoint operation updates the file system with the committed
data when a specific time interval has passed after the last
checkpoint or the free space ratio of the journal area crosses a
predefined threshold. DJ is incorporated into the commit
operation. Whenever a system call modifies the file system data,
dirty data and metadata are grouped in the transaction and are
handled in an atomic way. In the example, as shown in Fig. 2, a
write request modifies the contents of blocks a’, b’, and c’. These
dirty blocks are grouped in a transaction and are handled together.
When a commit operation is triggered, DJ first writes a JD
containing an array of journal block tags in the delta journal area
of NVRAM. The array of journal block tags describes the home
locations of the journal data in sequence. The details of the JD
will be further discussed in Section III.D. Then, DJ calculates
how much the updated block is different from the original block
in bit-wise comparison by using the XOR operation. If the result
of XOR is dominated by 0 or 1 (i.e., the compression ratio is
expected to be high), DJ logs the compressed delta in the delta
journal area of NVRAM. In this example, DJ stores the blocks a’
and b’ as the compressed delta. Otherwise, the updated block is
stored in the journal area of NAND flash storage as in the case of
block c’. At the end of the commit, DJ writes a JC in the delta
journal area of NVRAM to identify the end of the transaction. A
more detailed design of DJ is as follows.

220 IEEE Transactions on Consumer Electronics, Vol. 60, No. 2, May 2014

B. Difference Capturing

Whenever a commit operation is triggered, DJ captures the
difference between the updated and original blocks as shown
in Fig. 3. To do this, DJ maintains the original blocks in
DRAM memory to avoid reading them from NAND flash
storage. When the file system data is modified by a system
call, the operating system fetches the original blocks into the
buffer cache to minimize I/O operations. At this point, DJ
copies the original blocks before making modification. Then,
in the commit state, DJ calculates the difference level of each
block by using the XOR operation. After an updated block is
committed, the copy of the original block is also dropped by
DJ. Through this process, DJ can efficiently capture the
difference without incurring additional I/O operations and a
large memory overhead.

Fig. 3. Overall process of capturing the difference between the updated
and original blocks.

C. Delta Compression

If the difference meets a certain criterion, the differential
data block, made as a result of the XOR operation, is
compressed and then stored in the journal area of NVRAM.
For the delta compression, several candidate algorithms,
including fastLZ, gzip, LZF, LZ4, LZO, and LZW, are
investigated. All experiments were performed on a mobile
device equipped with a dual-core mobile CPU (see Section IV
for the detailed description of the environment). Fig. 4 and Fig.
5 show the compressed size and compression time of a 4 KB
block among those lossless compression algorithms. The
results showed that the gzip and LZW algorithms can achieve
a high compression ratio (i.e., the compressed size is relatively
smaller than that of the other candidate algorithms) as shown
in Fig. 4. However, they also have high computing cost, as
shown in Fig. 5.

Among the candidate algorithms, the LZO lossless
compression algorithm, which has an adequate trade-off
between compression time and compression ratio, is thus
implemented in DJ. In the experimental results, if the
difference was either less than 25% or more than 75%, the
compression ratio was considered high (i.e., the compressed
delta size is expected to be less than 25% of the block size).
Thus, the difference threshold of DJ is configured as above,
and DJ compresses the differential data block only when this
criterion is satisfied.

Fig. 4. Size of a 4 KB block compressed by several different lossless
compression algorithms.

Fig. 5. Compression time of a 4 KB block by several different lossless
compression algorithms.

D. NVRAM Management

DJ uses the NVRAM space as a delta journal area. Fig. 6
shows the layout of the NVRAM space and the data structure
of JD and JC. A journal metadata contains the information of
journal areas, one in the NAND flash storage and another in
the NVRAM, including size of journal area, size of free space,
and offset of the start position of each JD. During a commit
operation, a JD is written to the delta journal area of the
NVRAM first. The JD starts with a 12-byte journal header,
which contains a magic header and a sequence number
identifying the commit transaction, and the journal block tags
follow the journal header. Each 16-byte journal block tag
describes the home location of the journal data in sequence.
There are two types of journal block tag, TYPE_DELTA and
TYPE_NON_DELTA, to distinguish the journal blocks
according to their locations. In the case of a journal block as a
form of compressed delta in NVRAM, its journal block tag
consists of the home location of the journal data, flags, offset,
and length of the compressed delta. In the case of a journal
block in NAND flash storage, its journal block tag consists of
the home location of the journal data, flags, and the journal

J. Kim et al.: Reducing Excessive Journaling Overhead with Small-Sized NVRAM for Mobile Devices 221

block number. The field for the flags is used to identify the tag
type, and the field for the journal block number represents the
block address of the journal data in the NAND flash storage.
Through this process, DJ can maintain the journal areas in
both NVRAM and NAND flash storage. At the end of the
commit, a JC is attached to identify the end of the transaction.
The JC also starts with a 12-byte journal header, and consists
of a checksum and the commit time. The field for the
checksum is used to improve reliability. The journal data in
both NVRAM and NAND flash storage never plays an active
role, until a system failure occurs, and can be recycled after a
checkpoint operation is completed.

Fig. 6. Layout of the NVRAM and the data structure of JD and JC.

E. System Recovery

A sudden power failure is more likely to occur in battery-
powered mobile devices, and it can result in an inconsistent
state of the file system. After an abnormal termination, DJ
restores the file system to a consistent state upon system
reboot. There are two cases of a system crash to be considered.
First, if a system crash occurs during a commit operation, the
commit transaction may be partially logged in the journal
space. In this case, DJ simply invalidates the journal records,
which are described by the current commit transaction, in both
NVRAM and NAND flash journal areas. Therefore, the file
system remains as the last checkpoint state. Second, if a
system crash occurs during a checkpoint operation, the
checkpoint transaction may be partially reflected in the file
system. At this point, the journal records play an active role.
Since the partially reflected transaction still remains in the
journal space, DJ restores the file system to a consistent state
by reflecting the journal records, stored in NVRAM or NAND
flash storage, into their home locations. In the case in which a
compressed delta is stored in NVRAM, the journal record is
calculated through an XOR operation between the original
block in NAND flash storage and the decompressed delta in
NVRAM. Through this process, DJ can recover the file
system in a short time without performing time-consuming
consistency checks on the whole file system.

IV. PERFORMANCE EVALUATION

First, this section presents the hardware and software
configurations of the experimental platform. Then, this section
describes the optimal checkpoint threshold of NVRAM.
Finally, this section shows the experimental results of DJ and
compares DJ to an ext4 file system.

A. Experimental Setup

DJ is implemented in the Linux kernel 3.4 and is evaluated
on a real mobile device equipped with a dual-core CPU and 2
GB of DRAM. For the NAND flash storage, a 16 GB
microSD card is used. Since there is no commercially
available NVRAM for mobile devices, 16 MB of DRAM are
allocated for use as a small-sized NVRAM region [8]. This is
a reasonable assumption because the access time of NVRAM,
such as PCM or STT-MRAM, is expected to be similar to that
of DRAM [24], [25]. As a baseline for comparison, the ext4
file system is mounted with the ordered and journal modes.
For performance reasons, only metadata blocks are logged in
the ordered mode, and the ext4 file system uses the ordered
mode as a default journal configuration. Unlike the ordered
mode, the journal mode logs both data and metadata blocks,
so the journal mode guarantees the highest data consistency.
However, the journal mode has considerable overhead due to
a large number of journal writes. According to the default
configurations, the commit period is set to 5 seconds and the
checkpoint operation is triggered when 5 minutes have passed
after the last checkpoint or when a fourth of the journal area in
the NAND flash storage is filled. The checkpoint threshold of
the delta journal area is further discussed in Section IV.B.

B. Optimal Checkpoint Threshold of NVRAM

The previous version of DJ [23] did not consider the
optimal checkpoint threshold of NVRAM, which was the
same as that of the default configuration where a fourth of the
delta journal area in NVRAM is filled. Thus, it cannot fully
use the NVRAM space. For better space usage of NVRAM,
the optimal checkpoint threshold of NVRAM is evaluated in
this paper. For these experiments, three traces with different
distributions are generated: the Zipfian distribution, Bathtub
distribution, and Uniform distribution. In the Zipfian
distribution, the difference between the updated and the
original blocks is highly skewed in that most updates are very
small. The Bathtub is a bimodal distribution where most
updates are either very large or very small. Lastly, all
difference sizes are evenly distributed in the Uniform
distribution.

Fig. 7 shows the normalized execution time of each
workload under different checkpoint thresholds of NVRAM.
W1, W2, and W3 represent the Zipfian, Bathtub, and Uniform
distributions, respectively, and the execution time of each
workload for DJ is normalized to that of ext4. The
experimental results show that W1 and W2 achieve the best
performance when the checkpoint threshold of NVRAM is set
to 75%. On the other hand, W3 has the same performance
under all checkpoint thresholds.

222 IEEE Transactions on Consumer Electronics, Vol. 60, No. 2, May 2014

Fig. 7. Normalized execution time of each workload under different
checkpoint thresholds of NVRAM.

The number of checkpoint operations was measured to

analyze the experimental results. Fig. 8 shows the number of
checkpoint operations of each workload under different
checkpoint thresholds of NVRAM, and the results show that
W1 and W2 have the smallest number of checkpoint
operations when the checkpoint threshold of NVRAM is set to
75%. This result indicates that as the number of checkpoint
operations decreases, the performance of DJ improves. W3 has
the same number of checkpoint operations under all
checkpoint thresholds, unlike W1 and W2.

Fig. 8. The number of checkpoint operations of each workload under
different checkpoint thresholds of NVRAM.

The number of journal writes in NAND flash storage was

measured to further analyze the experimental results. Table I
shows the number of journal writes in NAND flash storage
under different checkpoint thresholds of NVRAM. In the
cases of W1 and W2, more journal writes were performed on
the NAND flash storage when the checkpoint threshold of
NVRAM was set to 100%. This is because, when a checkpoint
operation is triggered while the NVRAM space is full, a
commit transaction writes the updated blocks in the NAND
flash storage regardless of the difference level. In the case of
W3, the number of journal writes is much larger than that of

W1 and W2 because the compression ratio of most updated
blocks is expected to be low. Thus, the performance of W3 is
not affected by the checkpoint threshold of NVRAM. Due to
these experimental results, the checkpoint threshold of DJ is
set to 75%.

TABLE I
THE NUMBER OF JOURNAL WRITES IN NAND FLASH STORAGE UNDER

DIFFERENT CHECKPOINT THRESHOLDS OF NVRAM

Workload 25% 50% 75% 100%

W1 1,205 1,198 1,204 24,681
W2 42,206 42,209 42,211 67,009
W3 263,434 263,427 263,414 263,408

C. Experimental Results

1) Synthetic Workload
Synthetic workloads were developed to evaluate the best

and worst case performance of DJ. The synthetic workloads
consist of 512 MB and 1,024 MB overwrites under different
proportions of difference. As shown in Fig. 9, in the cases of
the 10% and 90% differences, DJ outperforms ext4 by 16.8
and 2.3 times in the 512 MB and 1,024 MB overwrites,
respectively. The performance improvement for the 512 MB
overwrites is far higher because DJ does not trigger a
checkpoint operation that would be caused by the lack of the
journal area. This result indicates that DJ can delay a
checkpoint operation by using the small-sized NVRAM
efficiently. In the case of the 50% difference, which is the
worst case scenario where there are no writes to the delta
journal area, the performance of DJ is approximately the same
as that of ext4. This result indicates that there is very little
computing overhead to capture the differences.

Fig. 9. Normalized execution time of synthetic workloads comparing ext4
and DJ. The execution time of DJ is normalized to that of ext4 according
to the amount of overwrites.

2) Micro Benchmark

Postmark [26] is used as a micro benchmark. Postmark
emulates an email server that concurrently performs read and
write operations. The experiments were performed with 1,000

J. Kim et al.: Reducing Excessive Journaling Overhead with Small-Sized NVRAM for Mobile Devices 223

files, whose average size is 2 KB, by varying the number of
transactions from 100 K to 500 K. Fig. 10 shows the
normalized execution time of the Postmark benchmark,
comparing ext4 and DJ. In the experimental results, DJ
outperforms ext4 by up to 12.1% and 27.5% in the ordered
and journal modes, respectively. This is because most small
updates are stored as compressed deltas in the small-sized
NVRAM instead of writing them to the NAND flash storage
synchronously. Also, the performance of DJ in the journal
mode is close to the performance of ext4 in the ordered mode.
In general, the ordered mode is widely used in journaling file
systems, even though the journal mode guarantees the highest
data consistency. The experimental results show that the
journal mode in DJ has adequate performance while providing
the highest data consistency.

Fig. 10. Normalized execution time of Postmark comparing ext4 and DJ.
The results are normalized to the ext4 ordered mode.

3) Real-World Workload

In the era of mobile computing, many popular applications
manage their data using a lightweight database library [13].
Thus, the TPC-C benchmark with the lightweight database
library is used for a more realistic workload on mobile devices.
Fig. 11 shows the number of normalized transactions
processed per minute (tpmC). The transaction throughput of
DJ achieved improvements of 25.5% and 29.2% compared to
that of ext4 in the ordered and journal modes, respectively.
This is because most small updated blocks are stored as
compressed deltas in the NVRAM, as shown in Fig. 12. In
particular, no journal data is stored in the journal area of the
NAND flash storage when DJ is mounted using the ordered
mode. As a result, DJ can eliminate the I/O sync overhead and
can thus improve transaction throughput. In the experimental
results, the average compressed delta size per block is only
3.7% of the block size (i.e., about 150 bytes). This result
indicates that DJ stores an updated block as a compressed
delta in the NVRAM only when the compressed delta is small
enough to efficiently use the small-sized NVRAM space.

In summary, DJ can improve the performance and the
lifetime of NAND flash storage with only an additional 16

MB NVRAM by considering the characteristics of the update
patterns in mobile devices. Furthermore, there is very little
computing overhead (under 1%) when capturing the
differences by using the host processor.

Fig. 11. Normalized transaction throughput of the TPC-C benchmark
comparing ext4 and DJ. The transaction throughput of DJ is normalized
to that of ext4 according to the journaling mode.

Fig. 12. Normalized journal writes of the TPC-C benchmark comparing
ext4 and DJ. The number of journal writes of DJ is normalized to that of
ext4 according to the journaling mode.

V. CONCLUSION

Journaling file systems are widely used in battery-powered
mobile devices, such as smartphones and tablets, to guarantee
data consistency. However, a traditional journaling technique
degrades the performance and shortens the lifetime of NAND
flash storage in mobile devices due to frequent storage
accesses. Considering the increasing popularity of the
journaling technique in mobile devices, excessive journaling
overhead is a critical problem that needs to be addressed
immediately. This paper proposed a novel journaling scheme
that resolves this problem by using NVRAM efficiently.
Although NVRAM, such as PCM or STT-MRAM, is
emerging as a future storage device technology, its density
and cost are not fully mature yet. Thus, the proposed scheme
stores an updated block as a compressed delta in a small-sized

224 IEEE Transactions on Consumer Electronics, Vol. 60, No. 2, May 2014

NVRAM only when the compressed delta is small enough.
Experimental results showed that the proposed scheme can
improve the performance and the lifetime of NAND flash
storage with only an additional 16 MB NVRAM.

This work contributes to the analysis of the unique update
pattern in mobile devices and presents a practical solution for
improving I/O efficiency with only a slight increase in
hardware costs. Also, the proposed solution can be easily
applied to many different types of commercial mobile devices
since it is designed to be compatible with traditional
journaling file systems.

REFERENCES
[1] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,

“Analysis and evolution of journaling file systems,” in Proc. USENIX
Annual Technical Conference, Anaheim, USA, pp. 105-120, Apr. 2005.

[2] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Consistency without ordering,” in Proc. USENIX Conference
on File and Storage Technologies, San Jose, USA, pp. 101-116, Feb.
2012.

[3] K. Lee and Y. Won, “Smart layers and dumb result: IO characterization
of an Android-based smartphone,” in Proc. ACM International
Conference on Embedded Software, Tampere, Finland, pp. 23-32, Oct.
2012.

[4] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won, “I/O stack optimization
for smartphones,” in Proc. USENIX Annual Technical Conference, San
Jose, USA, pp. 309-320, Jun. 2013.

[5] Y. Park and K. H. Park, “High-performance scalable flash file system
using virtual metadata storage with phase-change RAM,” IEEE Trans.
Comput., vol. 60, no. 3, pp. 321-334, Mar. 2011.

[6] Y. Park and J.-S. Kim, “zFTL: Power-efficient data compression support
for NAND flash-based consumer electronic devices,” IEEE Trans.
Consumer Electron., vol. 57, no. 3, pp. 1148-1156, Aug. 2011.

[7] H. J. Choi, S.-H. Lim, and K. H. Park, “JFTL: A flash translation layer
based on a journal remapping for flash memory,” ACM Trans. Storage,
vol. 4, no. 4, article 14, Jan. 2009.

[8] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache and
journaling layers with non-volatile memory,” in Proc. USENIX
Conference on File and Storage Technologies, San Jose, USA, pp. 73-
80, Feb. 2013.

[9] E. Lee, S. Yoo, J.-E. Jang, and H. Bahn, “Shortcut-JFS: A write efficient
journaling file system for phase change memory,” in Proc. IEEE
Symposium on Mass Storage Systems and Technologies, San Diego,
USA, pp. 1-6, Apr. 2012.

[10] D. Kim, E. Lee, S. Ahn, and H. Bahn, “Improving the storage
performance of smartphones through journaling in non-volatile
memory,” IEEE Trans. Consumer Electron., vol. 59, no. 3, pp. 556-561,
Aug. 2013.

[11] S. Lee, S. Jung, and Y. H. Song, “An efficient use of PRAM for an
enhancement in the performance and durability of NAND storage
systems,” IEEE Trans. Consumer Electron., vol. 58, no. 3, pp. 825-833,
Aug. 2012.

[12] G. Wu and X. He, “Delta-FTL: Improving SSD lifetime via exploiting
content locality,” in Proc. ACM European Conference on Computer
Systems, Bern, Switzerland, pp. 253-265, Apr. 2012.

[13] W.-H. Kang, S.-W. Lee, and B. Moon, “X-FTL: Transactional FTL for
SQLite databases,” in Proc. ACM International Conference on
Management of Data, New York, USA, pp. 97-108, Jun. 2013.

[14] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for
smartphones,” ACM Trans. Storage, vol. 8, no. 4, article 14, Nov. 2012.

[15] G. Sun, Y. Joo, Y. Chen, D. Niu, Y. Xie, Y. Chen, and H. Li, “A hybrid
solid-state storage architecture for the performance, energy consumption,
and lifetime improvement,” in Proc. IEEE International Symposium on
High Performance Computer Architecture, Bangalore, India, pp. 1-12,
Jan. 2010.

[16] J. K. Kim, H. G. Lee, S. Choi, and K. I. Bahng, “A PRAM and NAND
flash hybrid architecture for high-performance embedded storage
subsystems,” in Proc. ACM International Conference on Embedded
Software, Atlanta, USA, pp. 31-40, Oct. 2008.

[17] H. G. Lee, “High-performance NAND and PRAM hybrid storage design
for consumer electronics,” IEEE Trans. Consumer Electron., vol. 56, no.
1, pp. 112-118, Feb. 2010.

[18] Y. Park, S.-H. Lim, C. Lee, and K. H. Park, “PFFS: A scalable flash
memory file system for the hybrid architecture of phase-change RAM
and NAND flash,” in Proc. ACM Symposium on Applied Computing,
Fortaleza, Brazil, pp. 1498-1503, Mar. 2008.

[19] C. Lee and S.-H. Lim, “Efficient logging of metadata using NVRAM for
NAND flash based file system,” IEEE Trans. Consumer Electron., vol.
58, no. 1, pp. 86-94, Feb. 2012.

[20] K. Kim, S.-W. Lee, B. Moon, C. Park, and J.-Y. Hwang, “IPL-P: In-page
logging with PCRAM,” in Proc. Very Large Database Endowment, vol.
4, no. 12, pp. 1363-1366, Aug. 2011.

[21] M. Rosenblum and J. K. Ousterhout, “The design and implementation of
a log-structured file system,” ACM Trans. Computer Systems, vol. 10,
no. 1, pp. 26-52, Feb. 1992.

[22] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom, “SFS: Random write
considered harmful in solid state drives,” in Proc. USENIX Conference
on File and Storage Technologies, San Jose, USA, pp. 139-154, Feb.
2012.

[23] J. Kim, C. Min, and Y. I. Eom, “Reducing excessive journaling overhead
in mobile devices with small-sized NVRAM,” in Proc. IEEE
International Conference on Consumer Electronics, Las Vegas, USA,
pp. 19-20, Jan. 2014.

[24] H. Park, S. Yoo, and S. Lee, “Power management of hybrid
DRAM/PRAM-based main memory,” in Proc. Design Automation
Conference, San Diego, USA, pp. 59-64, Jun. 2011.

[25] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid PRAM and
DRAM main memory system,” in Proc. Design Automation Conference,
San Francisco, USA, pp. 664-669, Jul. 2009.

[26] J. Katcher, “Postmark: A new filesystem benchmark,” Technical Report
TR-3022, Network Appliance, 1997.

BIOGRAPHIES

Junghoon Kim received his B.S. degree in Computer
Engineering from Sungkyunkwan University, Korea in
2010 and M.S. degree in Mobile Systems Engineering
from Sungkyunkwan University in 2012. He is
currently a Ph.D. candidate in the Department of IT
Convergence at Sungkyunkwan University. His
research interests include storage systems, embedded

systems, mobile platforms, and operating systems.

Changwoo Min received his B.S. and M.S. degrees in
Computer Science from Soongsil University, Korea in
1996 and 1998, respectively, and his Ph.D. degree in
Mobile Systems Engineering from Sungkyunkwan
University, Korea in 2014. From 1998 to 2005, he was a
research engineer in Ubiquitous Computing Laboratory
(UCL) of IBM, Korea. Since 2005, he has been a

research engineer at Samsung Electronics. His research interests include
embedded systems, storage systems, and operating systems.

Young Ik Eom received his B.S., M.S., and Ph.D.
degrees in Computer Science and Statistics from Seoul
National University, Korea in 1983, 1985, and 1991,
respectively. From 1986 to 1993, he was an associate
professor at Dankook University in Korea. He was also a
visiting scholar in the Department of Information and
Computer Science at the University of California, Irvine,

from Sep. 2000 to Aug. 2001. Since 1993, he has been a professor at
Sungkyunkwan University in Korea. His research interests include
virtualization, operating systems, cloud systems, and system securities.

