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Abstract — Journaling techniques are widely used to 

guarantee file system consistency of battery-powered mobile 
devices such as smartphones and tablets. In a journaling file 
system, system recovery is facilitated by first writing updated 
data blocks to a journal area and then periodically writing 
them to their home locations. However, these duplicated 
writes degrade the performance and shorten the lifetime of 
NAND flash storage in mobile devices. In particular, a 
lightweight database library, which is mainly used to manage 
application data in mobile devices, is a major cause of 
excessive journaling because it frequently triggers the costly 
file synchronization to guarantee the atomicity of 
transactional execution and thus generates a significant 
amount of synchronous random write traffic. This paper 
presents a novel journaling scheme, called Delta Journaling 
(DJ), to resolve this problem efficiently by using small-sized 
nonvolatile random access memory (NVRAM). DJ is based on 
a unique update pattern found in mobile devices, where file 
system updates are mostly very small. By exploiting the byte-
addressable and the nonvolatile characteristics of NVRAM, 
DJ stores a journal block as a compressed delta in the small-
sized NVRAM only when the compressed delta is small 
enough. Experimental results show that DJ outperforms a 
traditional journaling file system by up to 16.8 times for 
synthetic workloads. For a real-world workload, it enhances 
transaction throughput by 25.5% and 29.2% in ordered and 
journal modes, respectively, with only 16 MB NVRAM. Also, 
DJ enhances the lifetime of NAND flash storage by 
eliminating almost all journal writes without any loss of 
reliability.1 
 

Index Terms — Journaling file system, NAND flash storage, 
NVRAM, Reliability 

I. INTRODUCTION 

File system reliability is one of the most crucial concerns 
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when designing file systems for battery-powered mobile 
devices, such as smartphones and tablets, because sudden 
power failure is more likely to occur. Journaling is a standard 
technique used in mobile device to restore a file system to a 
consistent state [1], [2]. In a journaling file system, system 
recovery is facilitated by first writing updated data blocks to a 
journal area and then periodically writing them to their home 
locations (i.e., their original locations). However, these 
duplicated writes degrade the performance and shorten the 
lifetime of NAND flash storage, especially in mobile devices 
where NAND flash memory is used for main data storage as a 
result of several limitations of NAND flash hardware [3], [4]. 
First, once a page is programmed, the page must be erased in 
order to write new data in the same place. Moreover, an erase 
operation takes about 10 times longer than a write operation 
because NAND flash memory can be erased only in the unit 
of a block, which is much larger than a page [5], [6]. Thus, 
this erase-before-write constraint makes the cost of a write 
operation that is much higher than that of a read operation. 
Second, NAND flash memory has limited program/erase 
cycles. Usually, multi-level cell (MLC) NAND flash memory 
guarantees about 10,000 erase cycles for each block, and 
triple-level cell (TLC) NAND flash memory guarantees only 
about 1,000 erase cycles [5]. 
 In order to reduce the journaling overhead, previous studies 
have proposed various solutions [7]-[10]. However, these 
solutions still have limitations. Choi et al. [7] proposed a 
journal remapping technique that remaps addresses of the 
logged journal data to addresses of the home locations instead 
of writing the updated blocks once more to the NAND flash 
storage. However, when writing data or metadata to NAND 
flash storage upon a periodic flush or upon a synchronization 
request such as an fsync system call, the updated blocks must 
be written to a separate journal area synchronously, regardless 
of the size of updates. Lee et al. [8] proposed a buffer cache 
architecture that uses nonvolatile random access memory 
(NVRAM), such as phase-change memory (PCM) or spin-
transfer torque magnetic RAM (STT-MRAM), as the union of 
buffer cache and journal area. However, it is difficult to 
implement this solution for mobile devices due to the limited 
density of NVRAM [11]. Moreover, the installation of larger 
NVRAM chips in mobile devices, such as smartphones and 
tablets, entails higher material costs, and so it deteriorates the 
competitiveness of the products in the markets. Lee et al. [9] 
proposed a journaling file system that reduces the amount of 
writes produced during journaling by exploiting the byte-
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accessibility of PCM. However, this solution can only be 
applied to a system that specifically uses PCM as the main 
data storage. Kim et al. [10] proposed a journaling technique 
for a lightweight database library. However, this solution can 
only be applied to a database library that is specifically 
implemented in the rollback journal mode, instead of the 
write-ahead log mode. 

This paper proposes a novel journaling scheme, called 
Delta Journaling (DJ), to reduce journaling overhead in 
mobile devices by using small-sized NVRAM efficiently. DJ 
uses two separate journal areas, one in the NAND flash 
storage and another in the NVRAM, and it exploits the byte-
addressable and the nonvolatile characteristics of NVRAM. 
Before writing an updated block to the journal area, DJ first 
calculates the difference (i.e., the delta) between the updated 
and the original blocks. If the compression ratio of the delta is 
high, only the compressed delta is logged in the delta journal 
area of the NVRAM. Otherwise, the updated block is written 
to the journal area of the NAND flash storage. Alternatively, it 
is also possible to write the compressed delta to the NAND 
flash storage layer [11], [12]. In this case, computing cost and 
power consumption are high because all updated blocks must 
be taken into account when compressing the delta without 
knowing the file system level semantics. Also, it is ineffective 
to implement additional hardware for the delta compression 
[11] or to use a less powerful internal microprocessor in the 
NAND flash storage [12]. On the other hand, DJ only 
considers overwrite blocks for the delta compression by 
exploiting file system level semantics, and also, it can reduce 
the compression time by using a more powerful host processor. 
DJ is especially efficient in mobile devices, where file system 
updates are mostly very small. 
 

 
Fig. 1. Cumulative distribution of the differences between updated and 
original blocks. 

 
 A previous study showed that a lightweight database library, 
which is mainly used for managing mobile application data, 
generates approximately 80% of the writes in a mobile device 
[3]. The lightweight database operation frequently triggers the 
fsync system call to guarantee data consistency. The frequent 

fsync calls incur excessive journaling and thus negatively 
impact overall system performance [13], [14]. Fig. 1 shows 
the cumulative distribution of the differences between updated 
and original blocks while running the TPC-C benchmark with 
a lightweight database library. More than 70% of updated 
blocks have less than 10% difference (i.e., the size of the 
difference when compared to the original block is smaller than 
400 bytes). This observation implies that DJ, which uses 
small-sized NVRAM as the journal area for the compressed 
delta, can greatly improve the performance and the lifetime of 
NAND flash storage in mobile devices. 

The remainder of this paper is organized as follows: Section 
II presents related work, Section III describes the detailed 
design of DJ, Section IV presents the experimental results, 
and finally, Section V concludes the paper. 

II. RELATED WORK 

DJ can greatly reduce the journaling overhead in mobile 
devices by exploiting the byte-addressable and the nonvolatile 
characteristics of NVRAM. In this regard, the two types of 
existing technologies that are most closely related to DJ are 
the NVRAM/NAND flash hybrid architectures [5], [11], [15]-
[19] and techniques for reducing the journaling overhead [7]-
[10]. This section briefly presents each work and compares it 
to DJ. 

A. NVRAM/NAND Flash Hybrid Architecture 

The NVRAM/NAND flash hybrid architecture utilizes the 
byte-accessibility and in-place update characteristics of 
NVRAM to complement the hardware limitations of NAND 
flash storage. The first approach employs a log region in PCM, 
storing the updates of data pages in the form of logs [15]. The 
log region allows in-place updates so that frequent, small 
updates can be effectively absorbed. However, when large 
updates are performed, this approach increases write latency 
because the read/write latency of PCM is slower than that of 
NAND flash memory for large data [20]. In contrast, DJ stores 
a compressed delta in the NVRAM only when the compressed 
delta is small enough. The second approach employs NVRAM 
as a metadata storage component [5], [16]-[19]. In general, 
file system metadata is frequently updated and only a few 
bytes are actually modified. Thus, in order to reduce excessive 
garbage in NAND flash memory, the metadata storage 
component stores file system metadata in PCM [5], [16]-[18] 
or synchronously stores the metadata updates as logs in 
NVRAM [19]. In contrast, DJ considers both file system data 
and metadata for the delta compression by exploiting a small 
update pattern in mobile devices. The third approach uses 
PCM as a buffer space in a storage device [11]. However, this 
approach requires additional hardware for the delta 
compression and cannot be applied to traditional log-
structured file systems [21], [22] because it does not know file 
system level semantics. In contrast, DJ uses a more powerful 
host processor and exploits file system level semantics for the 
delta compression. 
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B. Technique for Reducing Journaling Overhead 

Modern file systems in mobile devices use journaling to 
guarantee the consistency of both file system data and 
metadata [1], [2]. In journaling file systems, file system 
updates are first recorded in a separate journal area before 
being written back to their home locations in case the system 
needs to perform a recovery. However, journaling has 
considerable overhead because the same file system changes 
are written to the storage device twice. 

Choi et al. [7] proposed a journal remapping technique that 
remaps addresses of the logged file system changes to addresses 
of the home locations of the changes. With this technique, the 
journal pages are altered into updated pages of the file system, 
so additional writing to NAND flash storage is prohibited. 
However, when writing the updates to NAND flash storage 
upon periodic flush or upon synchronization request, the 
updated blocks must be written to a separate journal area of the 
NAND flash storage synchronously, regardless of the size of 
updates. Lee et al. [8] proposed a buffer cache architecture that 
subsumes the function of caching and journaling in a unified 
NVRAM space. Blocks in the buffer cache are converted to 
journal logs by using in-place commit technique, so the 
frequency of storage accesses can be reduced. However, it is 
difficult to apply this solution in mobile devices due to limited 
density and high cost of NVRAM [11]. In contrast, DJ stores 
journal data as a compressed delta in the NVRAM when a high 
compression ratio is achieved. Thus, DJ can greatly reduce the 
synchronous writes of journaling in mobile devices with only a 
small-sized NVRAM. 

Lee et al. [9] proposed a journaling file system that reduces 
the amount of journal writes considering the PCM 
characteristics. However, that system is designed for devices 
where NVRAM is used for main data storage. In contrast, DJ 
focuses on use in mobile devices, where NAND flash memory 
is used for main data storage. Kim et al. [10] proposed a 
journaling technique for a lightweight database library. Before 
reflecting new data to the original location of the database 
files, the lightweight database library creates a rollback 
journal file that maintains the original data for system 
recovery. To improve storage performance, the proposed 
technique places the rollback journal file in NVRAM. In 
contrast, DJ can be applied to all files, including database files, 
because it is designed at the file system level. 

 The previous version of DJ [23] stores journal data as a 
compressed delta in a small-sized NVRAM only when the 
compressed delta is small enough. Through this, DJ can reduce 
the excessive journaling overhead in mobile devices. Although 
it utilizes a small-sized NVRAM as a delta journal area 
efficiently, it does not consider the optimal checkpoint threshold 
of NVRAM, and thus, it cannot fully utilize the NVRAM space. 
Also, there are more opportunities to optimize the journaling 
performance. In this regard, the current version of DJ finds out 
the optimal checkpoint threshold of NVRAM and extends 
targets to include the journal descriptor (JD)/journal commit 
(JC) block to provide better performance. 

III. DESIGN OF DELTA JOURNALING 

This section first describes the overall architecture of the 
proposed system, and then, the detailed design of DJ is 
described in the following sequence: difference capturing, delta 
compression, NVRAM management, and system recovery. 

A. System Overview 

Fig. 2 shows the overall architecture of the proposed system. 
In the proposed system, the buffer cache acts as a transparent 
cache for storage-backed pages, and it is kept in the DRAM 
for fast access. To reduce the journaling overhead, a small-
sized NVRAM is connected to a memory bus supporting byte-
level access. NAND flash storage is used as main data storage 
in the proposed system. 
 

 
Fig. 2. Overall architecture of the proposed system. 

 
Similarly to the original journaling technique, DJ also 

performs commit and checkpoint operations. The commit 
operation writes the updated data to the journal area for potential 
use during system recovery upon a periodic flush or upon a 
synchronization request, such as fsync system call, and the 
checkpoint operation updates the file system with the committed 
data when a specific time interval has passed after the last 
checkpoint or the free space ratio of the journal area crosses a 
predefined threshold. DJ is incorporated into the commit 
operation. Whenever a system call modifies the file system data, 
dirty data and metadata are grouped in the transaction and are 
handled in an atomic way. In the example, as shown in Fig. 2, a 
write request modifies the contents of blocks a’, b’, and c’. These 
dirty blocks are grouped in a transaction and are handled together. 
When a commit operation is triggered, DJ first writes a JD 
containing an array of journal block tags in the delta journal area 
of NVRAM. The array of journal block tags describes the home 
locations of the journal data in sequence. The details of the JD 
will be further discussed in Section III.D. Then, DJ calculates 
how much the updated block is different from the original block 
in bit-wise comparison by using the XOR operation. If the result 
of XOR is dominated by 0 or 1 (i.e., the compression ratio is 
expected to be high), DJ logs the compressed delta in the delta 
journal area of NVRAM. In this example, DJ stores the blocks a’ 
and b’ as the compressed delta. Otherwise, the updated block is 
stored in the journal area of NAND flash storage as in the case of 
block c’. At the end of the commit, DJ writes a JC in the delta 
journal area of NVRAM to identify the end of the transaction. A 
more detailed design of DJ is as follows. 
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B. Difference Capturing 

Whenever a commit operation is triggered, DJ captures the 
difference between the updated and original blocks as shown 
in Fig. 3. To do this, DJ maintains the original blocks in 
DRAM memory to avoid reading them from NAND flash 
storage. When the file system data is modified by a system 
call, the operating system fetches the original blocks into the 
buffer cache to minimize I/O operations. At this point, DJ 
copies the original blocks before making modification. Then, 
in the commit state, DJ calculates the difference level of each 
block by using the XOR operation. After an updated block is 
committed, the copy of the original block is also dropped by 
DJ. Through this process, DJ can efficiently capture the 
difference without incurring additional I/O operations and a 
large memory overhead. 
 

 
Fig. 3. Overall process of capturing the difference between the updated 
and original blocks. 

 

C. Delta Compression 

If the difference meets a certain criterion, the differential 
data block, made as a result of the XOR operation, is 
compressed and then stored in the journal area of NVRAM. 
For the delta compression, several candidate algorithms, 
including fastLZ, gzip, LZF, LZ4, LZO, and LZW, are 
investigated. All experiments were performed on a mobile 
device equipped with a dual-core mobile CPU (see Section IV 
for the detailed description of the environment). Fig. 4 and Fig. 
5 show the compressed size and compression time of a 4 KB 
block among those lossless compression algorithms. The 
results showed that the gzip and LZW algorithms can achieve 
a high compression ratio (i.e., the compressed size is relatively 
smaller than that of the other candidate algorithms) as shown 
in Fig. 4. However, they also have high computing cost, as 
shown in Fig. 5. 

Among the candidate algorithms, the LZO lossless 
compression algorithm, which has an adequate trade-off 
between compression time and compression ratio, is thus 
implemented in DJ. In the experimental results, if the 
difference was either less than 25% or more than 75%, the 
compression ratio was considered high (i.e., the compressed 
delta size is expected to be less than 25% of the block size). 
Thus, the difference threshold of DJ is configured as above, 
and DJ compresses the differential data block only when this 
criterion is satisfied. 

 
Fig. 4. Size of a 4 KB block compressed by several different lossless 
compression algorithms. 

 

 
Fig. 5. Compression time of a 4 KB block by several different lossless 
compression algorithms. 

 

D. NVRAM Management 

DJ uses the NVRAM space as a delta journal area. Fig. 6 
shows the layout of the NVRAM space and the data structure 
of JD and JC. A journal metadata contains the information of 
journal areas, one in the NAND flash storage and another in 
the NVRAM, including size of journal area, size of free space, 
and offset of the start position of each JD. During a commit 
operation, a JD is written to the delta journal area of the 
NVRAM first. The JD starts with a 12-byte journal header, 
which contains a magic header and a sequence number 
identifying the commit transaction, and the journal block tags 
follow the journal header. Each 16-byte journal block tag 
describes the home location of the journal data in sequence. 
There are two types of journal block tag, TYPE_DELTA and 
TYPE_NON_DELTA, to distinguish the journal blocks 
according to their locations. In the case of a journal block as a 
form of compressed delta in NVRAM, its journal block tag 
consists of the home location of the journal data, flags, offset, 
and length of the compressed delta. In the case of a journal 
block in NAND flash storage, its journal block tag consists of 
the home location of the journal data, flags, and the journal 
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block number. The field for the flags is used to identify the tag 
type, and the field for the journal block number represents the 
block address of the journal data in the NAND flash storage. 
Through this process, DJ can maintain the journal areas in 
both NVRAM and NAND flash storage. At the end of the 
commit, a JC is attached to identify the end of the transaction. 
The JC also starts with a 12-byte journal header, and consists 
of a checksum and the commit time. The field for the 
checksum is used to improve reliability. The journal data in 
both NVRAM and NAND flash storage never plays an active 
role, until a system failure occurs, and can be recycled after a 
checkpoint operation is completed. 
 

 
Fig. 6. Layout of the NVRAM and the data structure of JD and JC. 

 

E. System Recovery 

A sudden power failure is more likely to occur in battery-
powered mobile devices, and it can result in an inconsistent 
state of the file system. After an abnormal termination, DJ 
restores the file system to a consistent state upon system 
reboot. There are two cases of a system crash to be considered. 
First, if a system crash occurs during a commit operation, the 
commit transaction may be partially logged in the journal 
space. In this case, DJ simply invalidates the journal records, 
which are described by the current commit transaction, in both 
NVRAM and NAND flash journal areas. Therefore, the file 
system remains as the last checkpoint state. Second, if a 
system crash occurs during a checkpoint operation, the 
checkpoint transaction may be partially reflected in the file 
system. At this point, the journal records play an active role. 
Since the partially reflected transaction still remains in the 
journal space, DJ restores the file system to a consistent state 
by reflecting the journal records, stored in NVRAM or NAND 
flash storage, into their home locations. In the case in which a 
compressed delta is stored in NVRAM, the journal record is 
calculated through an XOR operation between the original 
block in NAND flash storage and the decompressed delta in 
NVRAM. Through this process, DJ can recover the file 
system in a short time without performing time-consuming 
consistency checks on the whole file system. 

IV. PERFORMANCE EVALUATION 

First, this section presents the hardware and software 
configurations of the experimental platform. Then, this section 
describes the optimal checkpoint threshold of NVRAM. 
Finally, this section shows the experimental results of DJ and 
compares DJ to an ext4 file system. 

A. Experimental Setup 

DJ is implemented in the Linux kernel 3.4 and is evaluated 
on a real mobile device equipped with a dual-core CPU and 2 
GB of DRAM. For the NAND flash storage, a 16 GB 
microSD card is used. Since there is no commercially 
available NVRAM for mobile devices, 16 MB of DRAM are 
allocated for use as a small-sized NVRAM region [8]. This is 
a reasonable assumption because the access time of NVRAM, 
such as PCM or STT-MRAM, is expected to be similar to that 
of DRAM [24], [25]. As a baseline for comparison, the ext4 
file system is mounted with the ordered and journal modes. 
For performance reasons, only metadata blocks are logged in 
the ordered mode, and the ext4 file system uses the ordered 
mode as a default journal configuration. Unlike the ordered 
mode, the journal mode logs both data and metadata blocks, 
so the journal mode guarantees the highest data consistency. 
However, the journal mode has considerable overhead due to 
a large number of journal writes. According to the default 
configurations, the commit period is set to 5 seconds and the 
checkpoint operation is triggered when 5 minutes have passed 
after the last checkpoint or when a fourth of the journal area in 
the NAND flash storage is filled. The checkpoint threshold of 
the delta journal area is further discussed in Section IV.B. 

B. Optimal Checkpoint Threshold of NVRAM 

The previous version of DJ [23] did not consider the 
optimal checkpoint threshold of NVRAM, which was the 
same as that of the default configuration where a fourth of the 
delta journal area in NVRAM is filled. Thus, it cannot fully 
use the NVRAM space. For better space usage of NVRAM, 
the optimal checkpoint threshold of NVRAM is evaluated in 
this paper. For these experiments, three traces with different 
distributions are generated: the Zipfian distribution, Bathtub 
distribution, and Uniform distribution. In the Zipfian 
distribution, the difference between the updated and the 
original blocks is highly skewed in that most updates are very 
small. The Bathtub is a bimodal distribution where most 
updates are either very large or very small. Lastly, all 
difference sizes are evenly distributed in the Uniform 
distribution. 

Fig. 7 shows the normalized execution time of each 
workload under different checkpoint thresholds of NVRAM. 
W1, W2, and W3 represent the Zipfian, Bathtub, and Uniform 
distributions, respectively, and the execution time of each 
workload for DJ is normalized to that of ext4. The 
experimental results show that W1 and W2 achieve the best 
performance when the checkpoint threshold of NVRAM is set 
to 75%. On the other hand, W3 has the same performance 
under all checkpoint thresholds. 
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Fig. 7. Normalized execution time of each workload under different 
checkpoint thresholds of NVRAM. 

 
The number of checkpoint operations was measured to 

analyze the experimental results. Fig. 8 shows the number of 
checkpoint operations of each workload under different 
checkpoint thresholds of NVRAM, and the results show that 
W1 and W2 have the smallest number of checkpoint 
operations when the checkpoint threshold of NVRAM is set to 
75%. This result indicates that as the number of checkpoint 
operations decreases, the performance of DJ improves. W3 has 
the same number of checkpoint operations under all 
checkpoint thresholds, unlike W1 and W2. 
 

 
Fig. 8. The number of checkpoint operations of each workload under 
different checkpoint thresholds of NVRAM. 

 
The number of journal writes in NAND flash storage was 

measured to further analyze the experimental results. Table I 
shows the number of journal writes in NAND flash storage 
under different checkpoint thresholds of NVRAM. In the 
cases of W1 and W2, more journal writes were performed on 
the NAND flash storage when the checkpoint threshold of 
NVRAM was set to 100%. This is because, when a checkpoint 
operation is triggered while the NVRAM space is full, a 
commit transaction writes the updated blocks in the NAND 
flash storage regardless of the difference level. In the case of 
W3, the number of journal writes is much larger than that of 

W1 and W2 because the compression ratio of most updated 
blocks is expected to be low. Thus, the performance of W3 is 
not affected by the checkpoint threshold of NVRAM. Due to 
these experimental results, the checkpoint threshold of DJ is 
set to 75%. 
 

TABLE I 
THE NUMBER OF JOURNAL WRITES IN NAND FLASH STORAGE UNDER 

DIFFERENT CHECKPOINT THRESHOLDS OF NVRAM 

Workload 25% 50% 75% 100% 

W1 1,205 1,198 1,204 24,681 
W2 42,206 42,209 42,211 67,009 
W3 263,434 263,427 263,414 263,408 

 

C. Experimental Results 

1) Synthetic Workload 
Synthetic workloads were developed to evaluate the best 

and worst case performance of DJ. The synthetic workloads 
consist of 512 MB and 1,024 MB overwrites under different 
proportions of difference. As shown in Fig. 9, in the cases of 
the 10% and 90% differences, DJ outperforms ext4 by 16.8 
and 2.3 times in the 512 MB and 1,024 MB overwrites, 
respectively. The performance improvement for the 512 MB 
overwrites is far higher because DJ does not trigger a 
checkpoint operation that would be caused by the lack of the 
journal area. This result indicates that DJ can delay a 
checkpoint operation by using the small-sized NVRAM 
efficiently. In the case of the 50% difference, which is the 
worst case scenario where there are no writes to the delta 
journal area, the performance of DJ is approximately the same 
as that of ext4. This result indicates that there is very little 
computing overhead to capture the differences. 

 

 
Fig. 9. Normalized execution time of synthetic workloads comparing ext4 
and DJ. The execution time of DJ is normalized to that of ext4 according 
to the amount of overwrites. 

 
2) Micro Benchmark 

Postmark [26] is used as a micro benchmark. Postmark 
emulates an email server that concurrently performs read and 
write operations. The experiments were performed with 1,000 
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files, whose average size is 2 KB, by varying the number of 
transactions from 100 K to 500 K. Fig. 10 shows the 
normalized execution time of the Postmark benchmark, 
comparing ext4 and DJ. In the experimental results, DJ 
outperforms ext4 by up to 12.1% and 27.5% in the ordered 
and journal modes, respectively. This is because most small 
updates are stored as compressed deltas in the small-sized 
NVRAM instead of writing them to the NAND flash storage 
synchronously. Also, the performance of DJ in the journal 
mode is close to the performance of ext4 in the ordered mode. 
In general, the ordered mode is widely used in journaling file 
systems, even though the journal mode guarantees the highest 
data consistency. The experimental results show that the 
journal mode in DJ has adequate performance while providing 
the highest data consistency. 
 

 
Fig. 10. Normalized execution time of Postmark comparing ext4 and DJ. 
The results are normalized to the ext4 ordered mode. 

 
3) Real-World Workload 

In the era of mobile computing, many popular applications 
manage their data using a lightweight database library [13]. 
Thus, the TPC-C benchmark with the lightweight database 
library is used for a more realistic workload on mobile devices. 
Fig. 11 shows the number of normalized transactions 
processed per minute (tpmC). The transaction throughput of 
DJ achieved improvements of 25.5% and 29.2% compared to 
that of ext4 in the ordered and journal modes, respectively. 
This is because most small updated blocks are stored as 
compressed deltas in the NVRAM, as shown in Fig. 12. In 
particular, no journal data is stored in the journal area of the 
NAND flash storage when DJ is mounted using the ordered 
mode. As a result, DJ can eliminate the I/O sync overhead and 
can thus improve transaction throughput. In the experimental 
results, the average compressed delta size per block is only 
3.7% of the block size (i.e., about 150 bytes). This result 
indicates that DJ stores an updated block as a compressed 
delta in the NVRAM only when the compressed delta is small 
enough to efficiently use the small-sized NVRAM space. 

In summary, DJ can improve the performance and the 
lifetime of NAND flash storage with only an additional 16 

MB NVRAM by considering the characteristics of the update 
patterns in mobile devices. Furthermore, there is very little 
computing overhead (under 1%) when capturing the 
differences by using the host processor. 
 

 
Fig. 11. Normalized transaction throughput of the TPC-C benchmark 
comparing ext4 and DJ. The transaction throughput of DJ is normalized 
to that of ext4 according to the journaling mode. 

 

 
Fig. 12. Normalized journal writes of the TPC-C benchmark comparing 
ext4 and DJ. The number of journal writes of DJ is normalized to that of 
ext4 according to the journaling mode. 

V. CONCLUSION 

Journaling file systems are widely used in battery-powered 
mobile devices, such as smartphones and tablets, to guarantee 
data consistency. However, a traditional journaling technique 
degrades the performance and shortens the lifetime of NAND 
flash storage in mobile devices due to frequent storage 
accesses. Considering the increasing popularity of the 
journaling technique in mobile devices, excessive journaling 
overhead is a critical problem that needs to be addressed 
immediately. This paper proposed a novel journaling scheme 
that resolves this problem by using NVRAM efficiently. 
Although NVRAM, such as PCM or STT-MRAM, is 
emerging as a future storage device technology, its density 
and cost are not fully mature yet. Thus, the proposed scheme 
stores an updated block as a compressed delta in a small-sized 
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NVRAM only when the compressed delta is small enough. 
Experimental results showed that the proposed scheme can 
improve the performance and the lifetime of NAND flash 
storage with only an additional 16 MB NVRAM. 

This work contributes to the analysis of the unique update 
pattern in mobile devices and presents a practical solution for 
improving I/O efficiency with only a slight increase in 
hardware costs. Also, the proposed solution can be easily 
applied to many different types of commercial mobile devices 
since it is designed to be compatible with traditional 
journaling file systems. 
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