
Reducing Excessive Journaling Overhead
in Mobile Devices with Small-Sized NVRAM

Junghoon Kim†, Changwoo Min†‡, and Young Ik Eom†
†Sungkyunkwan University, Korea ‡Samsung Electronics, Korea

{myhuni20,multics69,yieom}@skku.edu

Abstract—The excessive journaling degrades the performance

and shortens the lifetime of NAND flash storage in mobile devices.

We propose a novel journaling scheme that resolves this problem

by using small-sized NVRAM efficiently. Experimental results

show that our proposed scheme outperforms EXT4 by up to

16.8 times for synthetic workloads. Also, for TPC-C SQLite

benchmark, it enhances the transaction throughput by 20% and

reduces the number of journal writes by 58% with only 16 MB

NVRAM.

I. INTRODUCTION

Reliability is one of the most important issues for design-
ing file systems in battery-powered mobile devices, such as
smartphones and tablets, because sudden power failures are
more likely to occur. Journaling is a standard technique for
restoring a file system to a consistent state in mobile devices.
In the journaling file system, updated data are first written to a
journal area for system recovery and then periodically written
to their home locations, i.e., original locations. However, these
duplicated writes impose two serious problems especially in
mobile devices, where NAND flash storage is used: degrading
the performance and shortening the lifetime of NAND flash
storage, which has limited P/E cycles [1]. A recent study [2]
shows that the excessive journaling is the major source of
the performance degradation in smartphones. A state-of-the-
art solution to reduce the journaling overhead is to use non-
volatile memory (NVRAM), such as PCM or STT-MRAM, as
the union of buffer cache and journal area [1]. However, it is
difficult to apply this solution in mobile devices due to limited
density and high cost of NVRAM [3].

In this paper, we propose a novel journaling scheme, called
Delta Journaling (DJ), to reduce the journaling overhead
in NAND flash storage by using small-sized NVRAM. DJ
exploits the byte-addressable and non-volatile characteristics
of NVRAM. Before writing an updated block to the journal
area, we first calculate the difference, or delta, between the
updated and original block. If the compression ratio of the
delta is high, only the compressed delta is written to the delta
journal area in the NVRAM. Otherwise, the non-compressed
block is written to the journal area in NAND flash storage.
This approach is based on the unique update pattern in mobile
devices: most updates are very small.

Previous study shows that SQLite database operations gen-
erate approximately 80% of writes in mobile devices [2].
SQLite frequently calls fsync system call to guarantee data
consistency. The frequent fsync calls incur the excessive

This research was supported by Next-Generation Information Computing
Development Program through the National Research Foundation of Ko-
rea(NRF) funded by the Ministry of Science, ICT & Future Plannig(2010-
0020730).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

C
u

m
u

la
tiv

e
 w

ri
te

 f
re

q
u

e
n

cy

Proportion of difference (%)

TPC-C SQLite

Fig. 1: The cumulative distribution of the difference in updat-
ing blocks

journaling and thus seriously injure the overall system per-
formance [2], [4]. Figure 1 shows the cumulative distribution
of the difference between updated and original block while
running TPC-C benchmark with SQLite. More than 70% of
updated blocks have less than 10% difference (i.e., the dif-
ference size is smaller than 400 bytes, compared with original
block). This observation implies that our approach, which uses
the small-sized NVRAM as the compressed delta journal area,
can greatly improve the performance and the lifetime of NAND
flash storage in mobile devices.

It is also possible to make the compressed delta in the
NAND flash storage layer [3], [5]. In this case, computing
cost and power consumption are high because all updated
blocks must be taken into account for the delta compression
without knowing the file system level semantics. Also, it is
ineffective to use a less powerful internal micro-processor of
NAND flash storage [5] or require additional hardware for the
delta compression [3]. On the other hand, DJ only considers
overwrite blocks for the delta compression by exploiting file
system level semantics and also it can reduce the compression
time by using a more powerful host processor.

II. DESIGN OF DELTA JOURNALING

Figure 2 shows the overview of DJ. Same to the original
journaling technique, DJ also performs commit and checkpoint
operations: the commit operation writes the updated data to
the journal area and then the checkpoint operation periodically
writes the updated data to their home locations. Our DJ is
incorporated into the commit operation. DJ first calculates how
much the updated block is different from the original block
in bit-wise by using XOR operation. If the result of XOR is
dominated by 0 or 1 (i.e., the compression ratio is expected
to be high), DJ logs the compressed delta on the delta journal
area of NVRAM. Otherwise, the updated block is stored in the
journal area of NAND flash storage. More detail design of DJ
is as follows.

A. Difference Capturing
Whenever the commit operation is triggered, DJ captures

the difference between the updated and original block. To do
this, DJ maintains original blocks in DRAM memory to avoid

2014 IEEE International Conference on Consumer Electronics (ICCE)

978-1-4799-1291-9/14/$31.00 ©2014 IEEE 23

NAND Storage

DRAM NVRAM

Delta Journal

File system changes

XOR

a’ b’ c’ Buffer Cache

Delta
Journaling?

No

Yes
Compression

File System
a b c

Journal
c’

Commit Checkpoint

: a b : metadata ∆ ∆

Compressed delta

Fig. 2: The overview of Delta Journaling

reading them from NAND flash storage. When data is modified
by a process, the operating system fetches original blocks into
the buffer cache and DJ copies original blocks before making
modification. After the updated block is committed, its copied
original block is also dropped by DJ. Through this process,
DJ can efficiently capture the difference without additional IO
and large memory overhead.

B. Delta Compression
If the difference meets certain criteria, the differential data

block, made from the XOR operation, is compressed and then
stored in the NVRAM. DJ uses LZO lossless compression
algorithm, which makes a good trade-off between compression
time and compression ratio among several candidates such
as fastLZ, gzip, and LZ4. In our experimental results, if
the difference is either less than 25%, or more than 75%,
the compression ratio is high (i.e., compressed delta size is
expected to be less than 25% of the block size). Thus, we set
the difference threshold of DJ prototype as above.

C. NVRAM Management
Checkpoint operation is triggered when the time interval has

passed after the last checkpoint or the free space ratio of the
journal area becomes below the threshold. At this point, DJ
updates the file system with committed data. If a system crash
occurs during the checkpoint operation, DJ restores the file
system to a consistent state by reflecting journaled data, stored
in NAND flash storage or NVRAM, into their home locations.
In case of a delta stored in NVRAM, the journal block is
calculated by XOR operation between its original block in
NAND flash storage and decompressed delta in NVRAM. To
do this, DJ manages metadata in the NVRAM including journal
transaction number, home location, offset, and length of delta.

III. PERFORMANCE EVALUATION

We implemented DJ on Linux kernel 3.4 and evaluated its
performance on a mobile device equipped with a dual-core
mobile CPU and 2GB DRAM. For NAND flash storage, 16 GB
A-Data microSD card is used. Since there is no commercially
available NVRAM for mobile devices, 16 MB of the DRAM
is used for small-sized NVRAM region [1]. As a baseline
for comparison, EXT4 file system is mounted with journal
mode, which logs both data and metadata to provide the same
consistency level as DJ.

To evaluate the best and worst case performance of DJ, we
developed synthetic workloads, which consist of 256 MB and
512 MB overwrites with various proportions of difference. As
shown in Figure 3a, in case of 10% and 90% difference, DJ
outperforms EXT4 by 16.8 and 2.3 times in 256 MB and 512
MB overwrites, respectively. The performance improvement of

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10 50 90

N
o
rm

a
liz

e
d
 e

xe
cu

tio
n
 t
im

e

Proportion of difference (%)

EXT4 (256 MB)
DJ (256 MB)

EXT4 (512 MB)
DJ (512 MB)

(a) Synthetic workload

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

tpmC journal writes
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

N
o
rm

a
liz

e
d
 t
p
m

C

N
o
rm

a
liz

e
d
 jo

u
rn

a
l w

ri
te

s

EXT4 DJ

(b) TPC-C SQLite

Fig. 3: Comparison between DJ and EXT4

256 MB overwrites is far higher because DJ does not trigger
checkpoint operation caused by the lack of the journal area.
This result indicates that DJ can delay checkpoint operation
by using small-sized NVRAM efficiently. In case of 50%
difference, which is our worst case scenario with no writing to
the delta journal area, the performance of DJ is approximately
same to that of EXT4. This result indicates that there is very
little computing overhead for capturing difference.

For more realistic workload on mobile devices, we run
TPC-C SQLite benchmark. Figure 3b shows the transaction
processed per minute (tpmC) and the number of journal writes
in the microSD card. DJ achieved about 20% improvement in
transaction throughput than EXT4. Also, the number of journal
writes in microSD card is reduced by 58%. This is because
most small updated blocks are stored as the compressed deltas
in the NVRAM. Through this, DJ can improve the performance
and the lifetime of NAND flash storage. We also identify that
average delta size per block is only 3.7% of the block size,
about 150 bytes. This result indicates that DJ only compresses
the differential data block in case of high compression ratio
for efficient use of NVRAM.

IV. CONCLUSION

We proposed a novel journaling scheme for reducing the
excessive journaling overhead in mobile devices. The proposed
scheme stores a commit block as a compressed delta in the
small-sized NVRAM only when the compressed delta is small
enough. Experimental results show that the proposed scheme
can improve the performance and the lifetime of NAND flash
storage with only 16 MB NVRAM.

REFERENCES

[1] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache and
journaling layers with non-volatile memory,” in Proc. of FAST, 2013.

[2] K. Lee and Y. Won, “Smart layers and dumb result: IO characterization
of an android-based smartphone,” in Proc. of EMSOFT, 2012.

[3] S. Lee, S. Jung, and Y. H. Song, “An efficient use of PRAM for
an enhancement in the performance and durability of NAND storage
systems,” IEEE Transactions on Consumer Electronics, 2012.

[4] W.-H. Kang, S.-W. Lee, B. Moon, G.-H. Oh, and C. Min, “X-FTL:
Transactional FTL for SQLite databases,” in Proc. of SIGMOD, 2013.

[5] G. Wu and X. He, “Delta-FTL: Improving SSD lifetime via exploiting
content locality,” in Proc. of EuroSys, 2012.

24

