
Integrating Lock-Free and Combining
Techniques for a Practical and Scalable

FIFO Queue
Changwoo Min and Young Ik Eom

Abstract—Concurrent FIFO queues can be generally classified into lock-free queues and combining-based queues. Lock-free

queues require manual parameter tuning to control the contention level of parallel execution, while combining-based queues

encounter a bottleneck of single-threaded sequential combiner executions at a high concurrency level. In this paper, we

introduce a different approach using both lock-free techniques and combining techniques synergistically to design a practical

and scalable concurrent queue algorithm. As a result, we have achieved high scalability without any parameter tuning: on an

80-thread average throughput in our experimental results, our queue algorithm outperforms the most widely used Michael and

Scott queue by 14.3 times, the best-performing combining-based queue by 1.6 times, and the best performing �86-dependent

lock-free queue by 1.7 percent. In addition, we designed our algorithm in such a way that the life cycle of a node is the same

as that of its element. This has huge advantages over prior work: efficient implementation is possible without dedicated memory

management schemes, which are supported only in some languages, may cause a performance bottleneck, or are patented.

Moreover, the synchronized life cycle between an element and its node enables application developers to further optimize

memory management.

Index Terms—Concurrent queue, lock-free queue, combining-based queue, memory reclamation, compare-and-swap, swap

Ç

1 INTRODUCTION

THE FIFO queues are one of the most fundamental and
highly studied concurrent data structures. They are

essential building blocks of libraries [1], [2], [3], runtimes for
pipeline parallelism [4], [5], and high performance tracing
systems [6]. These queues can be categorized according to
whether they are based on static allocation of a circular array
or on dynamic allocation in a linked list, and whether or not
they support multiple enqueuers and dequeuers. This paper
focuses on dynamically allocated FIFO queues supporting
multiple enqueuers and dequeuers. Although extensive
research has been performed to develop scalable and practi-
cal concurrent queues, there are two remaining problems
that limit wider practical use: (1) scalability is still limited in a
high level of concurrency or it is difficult to achieve without
sophisticated parameter tuning; and (2) the use of dedicated
memory management schemes for the safe reclamation of
removed nodes imposes unnecessary overhead and limits
the further optimization of memorymanagement [7], [8], [9].

In terms of scalability, avoiding the contended hot spots,
Head and Tail, is the fundamental principle in designing
concurrent queues. In this regard, there are two seemingly
contradictory approaches. Lock-free approaches use fine-grain
synchronization to maximize the degree of parallelism and
thus improve performance. The MS queue presented by

Michael and Scott [10] is the most well-known algorithm,
and many works to improve the MS queue have been pro-
posed [10], [11], [12], [13], [14]. They use compare-and-

swap (CAS) to update Head and Tail. In the CAS, how-
ever, of all contending threads, only one will succeed, and
all the other threads will fail and retry until they succeed.
Since the failing threads use not only computational resour-
ces, but also the memory bus, which is a shared resource in
cache-coherent multiprocessors, they also slow down the
succeeding thread. A common way to reduce such conten-
tion is to use an exponential backoff scheme [10], [15], which
spreads out CAS retries over time. Unfortunately, this pro-
cess requires manual tuning of the backoff parameters for a
particular workload and machine combination. To avoid
this disadvantage, Morrison and Afek [16] proposed a lock-
free queue based on fetch-and-add (F&A) atomic instruc-
tions, which always succeeds but is �86-dependent. Though
the �86 architecture has a large market share, as the core
count increases, industry and academia have actively devel-
oped various processor architectures to achieve high scal-
ability and low power consumption and thus we need more
portable solutions.

In contrast, combining approaches [17], [18], [19] use an
opposite strategy to the lock-free approaches. A single com-
biner thread, that acquires a global lock at a time, combines
all concurrent requests from other threads, and then per-
forms their combined requests. In the meantime, each thread
that does not hold the lock busy waits until either its request
has been fulfilled by the combiner or the global lock has been
released. This technique has the dual benefit of reducing the
synchronization overhead on hot spots, and at the same time
reducing the overall cache invalidation traffic. So the waiting
thread does not slow down the combiner’s performance.

� The authors are with the College of Information and Communication
Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea.
E-mail: {multics69, yieom}@skku.edu.

Manuscript received 12 Jan. 2014; revised 17 June 2014; accepted 20 June
2014. Date of publication 24 June 2014; date of current version 5 June 2015.
Recommended for acceptance by M. Kandemir.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.2333007

1910 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 2015

1045-9219� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

However, this comes at the expense of parallel execution
and, thus, at a high concurrency level, the sequential execu-
tion becomes a performance bottleneck [20].

Memory management in concurrent queue algorithms is
a non-trivial problem. In previous work, nodes that have
been already dequeued cannot be freed using a standard
memory allocator, and dedicated memory management
schemes are needed. There are two reasons for this. First,
the last dequeued node is recycled as a dummy node pointed
by Head so it is still in use. Second, even after a subsequent
dequeue operation makes the dummy node get out of the
queue, the old dummy node, which is not in the queue, can
be accessed by other concurrent operations (also known as
the repeat offender problem [8] or read/reclaim races [9]). There-
fore, dedicated memory management schemes need to be
used, such as garbage collection (GC), freelists, lock-free refer-
ence counting [21], [22], and hazard pointers [7], [8], [23]. How-
ever, they are not free of charge; GC is only supported in
some languages such as Java; freelists have large space
overhead; others are patented [21], [22] or under patent
application [23]. Moreover, the mismatch at the end of life
between an element and its node limits further optimization
of the memory management.

In this paper, we propose a scalable out-of-the-box con-
current queue, LECD queue, which requires neither manual
parameter tuning nor dedicated memory management
schemes. We make the following contributions:

� We argue that prior work is stuck in a dilemma with
regard to scalability: lock-free techniques require the
manual tuning of parameters to avoid the contention
meltdown, but combining techniques lose opportu-
nities to exploit the advantages of parallel execution.

In this regard, we propose a linearizable concurrent
queue algorithm: Lock-free Enqueue and Combining
Dequeue (LECD) queue. In our LECD queue, enqueue
operations are performed in a lock-free manner, and
dequeue operations are performed in a combining
manner. We carefully designed the LECD queue so
that the LECD queue requires neither retrying atomic
instructions nor tuning parameters for limiting the
contention level; a SWAP instruction used in the
enqueue operation always succeeds and a CAS
instruction used in thedequeue operation is designed
not to require retryingwhen it fails. Using the combin-
ing techniques in the dequeue operation significantly
improves scalability and has additional advantages
together with the lock-free enqueue operation: (1) by
virtue of the concurrent enqueue operations, we can
prevent the combiner from becoming a performance
bottleneck, and (2) the higher combining degree
incurred by the concurrent enqueue operations
makes the combining operation more efficient. To our
knowledge, the LECD queue is the first concurrent
data structure that uses both lock-free and combining
techniques.

� Using dedicated memory management schemes is
another aspect that hinders the wider practical use
of prior concurrent queues. The fundamental reason
for using dedicated schemes is in the mismatch at
the end of life between an element and its node.

In this regard, we made two non-traditional, but
practical, design decisions. First, to fundamentally
avoid read/reclaim races, the LECDqueue is designed
for one thread to access Head and Tail at a time.
Since dequeue operations are serialized by a single
threaded combiner, only one thread accesses Head at
a time. Also, a thread always accesses Tail through a
private copy obtained as a result of SWAP operation, so
there is no contention on accessing the private copy.
Second, we introduce a permanent dummy node tech-
nique to synchronize the end of life between an ele-
ment and its node. We do not recycle the last
dequeued node as a dummy node. Instead, the ini-
tially allocated dummy node is permanently used by
updating Head’s next instead of Head in dequeue

operations. Our approach has huge advantages over
prior work. Efficient implementations of the LECD
queue are possible, even in languages which do not
support GC, without using dedicated memory man-
agement schemes. Also, synchronizing the end of life
between an element and its node opens up opportuni-
ties for further optimization, such as by embedding a
node into its element.

� We compared our queues to the state-of-the-art lock-
free queues [10], [16] and combining-based queues
[19] in a system with 80 hardware threads. Experi-
mental results show that, except for queues [16]
which support only Intel �86 architecture, the LECD
queue performs best. Even in comparison with the
�86-dependent queue [16] whose parameter is man-
ually tuned beforehand, the LECD queue outper-
forms the �86-dependent queue in some benchmark
configurations. Since the LECD queue requires nei-
ther parameter tuning nor dedicated memory man-
agement schemes, we expect that the LECD queue
can be easily adopted and used in practice.

The remainder of this paper is organized as follows:
Section 2 describes related work and Section 3 elaborates
our LECD queue algorithm. Section 4 shows the exten-
sive evaluation results. The correctness of the LECD
queue is discussed in Section 5. Finally, in Section 6, we
conclude the paper.

2 RELATED WORK

Concurrent FIFO queues have been studied for more than
a quarter of a century, starting with work by Treiber [24].
In this section, we will elaborate on the lock-free queues
in Section 2.1, the combining-based queues in Section 2.2,
and SWAP-based queues in Section 2.3. Finally, we will
explain the prior work on memory management schemes
in Section 2.4.

2.1 Lock-Free Queues

MS Queue presented by Michael and Scott [10] is the most
widely used lock-free queue algorithm. It updates Head,
Tail, and Tail’s next in a lock-free manner using CAS.
When the CAS fails, the process is repeated until it succeeds.
However, when the concurrency level is high, the frequent
CAS retries result in a contention meltdown [18], [19].
Though bounded exponential backoff delay is used to

MIN AND EOM: INTEGRATING LOCK-FREE AND COMBINING TECHNIQUES FOR A PRACTICAL AND SCALABLE FIFO QUEUE 1911

reduce such contention, manual tuning of the backoff
parameters is required for the particular combinations of
workloads and machines [14]. Moreover, if they are backed
off too far, none of the competing threads can progress.
Consequently, many implementations [1], [2], [3] are pro-
vided without the backoff scheme.

Ladan-Mozes and Shavit [11] introduced the optimistic
queue. The optimistic queue reduces the number of CAS

operations in an enqueue operation from two to one. The
smaller number of necessary CAS operations also reduces
the possibility of CAS failure and contributes to improving
scalability. However, since the queue still contains CAS retry
loops, it suffers from the CAS retry problem and manual
backoff parameter tuning.

Moir et al. [13] used elimination as a backoff scheme of
the MS queue to allow pairs of concurrent enqueue and
dequeue operations to exchange values without accessing
the shared queue itself. Unfortunately, the elimination backoff
queue is practical only for very short queues because the
enqueue operation cannot be eliminated until all previous
values have been dequeued in order to keep the correct
FIFO queue semantics.

Hoffman et al. [14] reduced the possibility of CAS retries
in an enqueue operation by creating baskets of mixed-order
items instead of the standard totally ordered list. Unfortu-
nately, creating a basket in the enqueue operation imposes
a new overhead in the dequeue operation: linear search
between Head and Tail is required to find the first non-
dequeued node. Moreover, a backoff scheme is still needed
to limit the contention among losers who failed the CAS.
Consequently, in some architectures, the baskets queue per-
forms worse than the MS queue [18].

Morrison and Afek [16] recently proposed LCRQ and
LCRQþH (LCRQ with hierarchical optimization). LCRQ is
an MS queue where a node is a concurrent circular ring
queue (CRQ). If the CRQ is large enough, enqueue and
dequeue operations can be performed using F&A without
CAS retries. Since LCRQ relies on F&A and CAS2, which are
supported only in Intel �86 architectures, porting to other
architectures is not feasible. To obtain the best performance,
hierarchical optimization (LCRQþH), which manages con-
tention among clusters, is essential. If the running cluster ID
of a thread is different from the currently scheduled cluster
ID, the thread voluntarily yields for a fixed amount of time
and then preempts the scheduled cluster to proceed. This
creates batches of operations that complete on the same
cluster without interference from remote clusters. Since it
reduces costly cross-cluster traffic, this process improves
performance. However, the yielding time should be manu-
ally tuned for a particular workload and machine combina-
tion. Moreover, at a low concurrency level with little chance
of aggregation on the same cluster, the voluntarily yielding
could result in no aggregation and thus could degrade per-
formance. We will investigate the performance characteris-
tics of LCRQ and LCRQþH in Section 4.4.

2.2 Combining-Based Queues

In combining techniques, a single thread, called the combiner,
serves, in addition to its own request, active requests pub-
lished by the other threads while they are waiting for the
completion of processing their requests in some form of

spinning. Though the single-threaded execution of a com-
biner could be a performance bottleneck, the combining tech-
niques could outperform traditional techniques based on
fine-grain synchronization when the synchronization cost
overshadows the benefit of parallel execution. A combining
technique is essentially a universal construction [25] used to
construct a concurrent data structure from a sequential
implementation. In most research, combining-based queues
are constructed from the two-lock queue presented by
Michael and Scott [10] by replacing the locks with combining
constructions, so they are blocking algorithms with no read/
reclaim races. The first attempt at combining operations
dates back to the software combining tree proposed by Yew
et al. [26]. Since then,most research efforts have been focused
onminimizing the overhead of request management.

Oyama et al. [17] presented a combining technique which
manages announced requests in a stack. Though serving
requests in LIFO order could reduce the cache miss rate, con-
tention on updating the stack Topwith a CAS retry loop could
result in contentionmeltdownunder a high level of contention.

In the flat combining presented by Hendler et al. [18], the
list of announced requests contains a request for each thread
independent of whether the thread currently has an active
request. Though this reduces the number of insertions to
the list, each request in the list should be traversed regard-
less of whether it is active or not. The unnecessary scanning
of inactive requests decreases the efficiency of combining as
concurrency increases.

Fatourou and Kallimanis presented a blocking combining
construction called CC-Synch [19], in which a thread announ-
ces a request using SWAP, andH-Synch [19], which is an opti-
mized CC-Synch for clustered architectures such as NUMA.
H-Synch manages the lists of announced requests for each
cluster. The combiner threads, which are also per-cluster and
synchronized by a global lock, process the requests from their
own clusters. Among the combining techniques proposed so
far, H-Synch performs best, followed by CC-Synch. There-
fore, among combining-based queues, H-Queue, which is a
queue equipped with H-Synch, performs best, followed by
CC-Queue, which uses CC-Synch.

2.3 SWAP-Based Queues

Though the majority of concurrent queues are based on CAS,
there are several queue algorithms based on SWAP (or
fetch-and-store). Mellor-Crummey [27] proposed a
SWAP-based concurrent queue which is linearizable but
blocking. Since enqueue and dequeue operations access
both Head and Tail, enqueuers and dequeuers interfere
each other’s cacheline and thus result in limited scalability.
Min et al. [12] proposed a scalable cache-optimized queue, which
is also linearizable but blocking. They completely remove
CAS failure in enqueue operation by replacing CAS with
SWAP and significantly reduce cacheline interference
between enqueuers and dequeuers. Though the queue
shows better performance than the optimistic queue [11], it still
contains a CAS retry loop in dequeue operation. While these
two algorithms supportmultiple enqueuers and multiple deque-
uers, there are a few SWAP-based queue algorithms which
support multiple enqueuers and single dequeuer. Vyukov’s
queue [28] is non-linearizable and non-blocking; Desnoyers
and Jiangshan’s queue [29] is linearizable but blocking.

1912 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 2015

2.4 Memory Management

Including list-based queues, dynamic-sized concurrent data
structures that avoid locking face the problem of reclaiming
nodes that are no longer in use and the ABA problem [7],
[8], [9]. In case of concurrent queue algorithms, before
releasing a node in a dequeue operation, we must ensure
that no thread will subsequently access the node. When a
thread releases a node, some other contending thread,
which has earlier read a reference to that node, is about to
access its contents. If the released node is arbitrarily reused,
the contending thread might corrupt the memory, which
was occupied by the node, return the wrong result, or suffer
an access error by dereferencing an invalid pointer.

In garbage-collected languages such as Java, those prob-
lems are subsumed into automatic garbage collectors, which
ensures that a node is not released if any live reference to it
exists. However, for languages like C, where memory must
be explicitly reclaimed, previous work proposed various
techniques including managing a freelist with an ABA tag
[10], [11], [13], [14], [24], lock-free reference counting [21],
[22], quiescent-state-based reclamation [30], [31], [32], [33],
epoch-based reclamation [34], and hazard-pointer-based
reclamation [7], [8], [23].

A common approach is to tag values stored in nodes
and access such values only through CAS operations. In
algorithms using this approach [10], [11], [13], [14], [24], a
CAS applied to a value after the node has been released
will fail, so the contending thread detects whether the
node is already released or not. However, since a thread
accesses a value which is in previously released memory,
the memory used for tag values cannot be used for any-
thing else. To ensure that the tag memory is never reused
for other purposes, a freelist explicitly maintains released
nodes. An important limitation of using a freelist is that
queues are not truly dynamic-sized: if the queues grow
large and subsequently shrink, then the freelist contains
many nodes that cannot be reused for any other purposes.
Also, a freelist is typically implemented using Treiber’s
stack [24] — a CAS-based lock-free stack, and its scalabil-
ity is fundamentally limited by high contention on updat-
ing the stack top [35].

Another approach is to distinguish between removal
of a node and its reclamation. Lock-free reference count-
ing [21], [22] has high overhead and scales poorly [9]. In
epoch-based reclamation [34] and hazard-pointer-based
reclamation [7], [8], [23], readers explicitly maintain a list
of currently accessing nodes to decide when it is safe to
reclaims nodes. In quiescent-state-based reclamation [30],
[31], [32], [33], safe reclamation times (i.e., quiescent
states) are inferred by observing the global system state.
Though these algorithms can reduce space overhead,
they impose additional overhead, such as atomic opera-
tions and barrier instructions. Hart et al. [9] show that
the overhead of inefficient reclamation can be worse than
that of locking and, unfortunately, there is no single opti-
mal scheme: data structure, workloads, and execution
environments can dramatically affect the memory recla-
mation performance.

In practice, since most memory reclaim algorithms are
patented or under patent application [21], [22], [23], [30],
most implementations [2], [3] written in C/C++ rely on free-
lists based on a Treiber’s stack.

3 THE LECD QUEUE

In this section, we elaborate the LECD queue algorithm and
its memory management in Sections 3.1 and 3.2, respec-
tively, and then discuss its linearizability and progress
property in Section 3.3.

The LECD queue is a list-based concurrent queue which
supports concurrent enqueuers and dequeuers. The LECD
queue performs enqueue operations in a lock-free manner
and performs dequeue operations in a combining manner in
order to achieve high scalability at a high degree of concur-
rencywithout manual parameter tuning and dedicated mem-
ory management schemes. We illustrate the overall flow of
the LECD queue in Fig. 1. In the enqueue operation, we first
update Tail to a new node using SWAP (E1) and update the
old Tail’s next to the newnode (E2). In the dequeue opera-
tion, we first enqueue a request into a request list using SWAP

(D1, D2) and then determinewhether the current thread takes
the role of a combiner (D3). If it does not take the role of a com-
biner, it waits until the enqueued request is processed by the

Fig. 1. The overall flow of the LECD queue algorithm. Enqueue operation and dequeue operation are shown in E1-E2 and in D1-D4, respectively.
Combining dequeue operation is shown in C1-C6.

MIN AND EOM: INTEGRATING LOCK-FREE AND COMBINING TECHNIQUES FOR A PRACTICAL AND SCALABLE FIFO QUEUE 1913

combiner (D4a). Otherwise (D4b), it, as a combiner, processes
pending requests in the list (C1-C6). Many-core systems are
typically built with clusters of cores such that communication
among the cores of the same cluster is performedmuch faster
than that among cores residing in different clusters. Intel
Nehalem and Sun Niagara 2 are examples of cluster architec-
ture. To exploit the performance characteristics of cluster
architecture, we manage a request list for each cluster, similar
to H-Synch [19]. The execution of per-cluster combining
threads is serialized by the global combiner lock (C1, C6). The
combiner thread processes pending requests for the cluster
(C2) and checks whether the queue has become empty (C3).
Similar to the MS queue, we use a dummy node pointed by
Head to check whether the queue is empty. In the MS queue,
the last dequeued node is recycled into a dummy node, while
our dummy node is allocated at queue initialization and per-
manently used. Since this makes the life cycle of a dequeued
element and its queue node the same, more flexible memory
management, such as embedding a queue node to an element,
is possible. To this end, we update Head’s next instead of
Head when the queue is not empty (C4b). When the queue
becomes empty, we update Tail to Head and Head’s next
to null using CAS (C4a). Since the CAS operation is used to
handle concurrent updates from enqueuers, no retry loop is
needed. In this way, since the LECDqueue is based on a SWAP
atomic primitive, which always succeeds, unlike CAS, and a
CAS with no retry loop, parameter tuning is not required to
limit the contention level. We illustrate an example of the
LECD queue running in nine concurrent threads (T1-T9). As
Fig. 2 shows, the LECD queue concurrently performs three
kinds of operations: enqueue operation (T1, T2), dequeue
combining operation (T3), and addingnewdequeue requests
(T5, T6 and T9).

There are interesting interactions between enqueue oper-
ations and dequeue operations. Since enqueue operations
are performed in parallel using a lock-free manner, threads
spend most of their time executing dequeue operations. In
this circumstance, a combiner can process a longer list of
requests in a single lock acquisition. This results in more

efficient combining operations by reducing locking overhead
and context switching overhead among combiners. Conse-
quently, the LECD queue significantly outperforms the previ-
ous combining-based queues.

3.1 Our Algorithm

We present the pseudo code of the LECD queue in Fig. 3.
The LECD queue is based on widely supported SWAP and
CAS instructions. SWAP(a,v) atomically writes the value of
v into a and returns the previous value of a. CAS(a,o,v)
atomically checks whether the value of a is o, and if they
are the same, it writes the value of v into a and returns
true, otherwise it returns false. Though SWAP is a less
powerful primitive than CAS, it always succeeds, so neither
the retry loop nor contention management, such as a backoff
scheme [10], [11], [14] is needed. CAS is the most widely
supported atomic instruction, and SWAP is also supported
in most hardware architectures, including �86, ARM, and
Sparc. Thus, the LECD queue can work on various hard-
ware architectures.

3.1.1 Initialization

In the LECD queue, Head points to a dummy node and
Tail points to the last enqueued node. Nodes in the queue
are linked via next in the order of enqueue operations.
When a queue is empty with no element, both Head and
Tail point to a dummy node. When initializing a queue,
we set Head and Tail to a newly allocated permanent
dummy node (line 23) and initialize per-cluster request lists
(lines 24-27).

3.1.2 Enqueue Operation

We first set the next of a new node to null (line 31), and
then update Tail to the new node using SWAP (line 32). As
a result of the SWAP operation, we atomically read the old
Tail. Finally, we update old Tail’s next to the new node
(line 33). The old Tail’s next is updated using a simple
store instruction since there is no contention on updating.
In contrast to previous lock-free queues [10], [11], [14], our
enqueue operation always succeeds regardless of the level
of concurrency. Moreover, since any code except SWAP can
be executed independently with other concurrent threads,
an enqueuer can enqueue a new node, even in front of a
node being inserted by another concurrent enqueue opera-
tion (between lines 32 and 33). Thus, we can fully exploit
the advantages of parallel execution. However, there could
be races between writing the old_tail’s next in enque-
uers and reading the old_tail’s next in dequeuers. In
Section 3.3, we will elaborate on how to handle the races to
preserve linearizability.

3.1.3 Dequeue Operation

Request structure. The per-cluster request list contains
dequeue requests from dequeuing threads in a cluster and
maintains the last request in the list as a dummy request. An
initial dummy request is allocated for each cluster at queue
initialization (lines 24-27). A dequeuing thread first inserts a
new dummy request at the end of the list (lines 50-57) and
behaves according to the status of the previous last request

Fig. 2. An illustrative example of the LECD queue, where nine concur-
rent threads (T1-T9) are running. A curved arrow denotes a thread; a
solid one is in a running state and a dotted one is in a blocked state. A
gray box denotes a dummy node and a dotted box denotes that a thread
is under operation. T1 and T2 are enqueuing nodes. T3 and T7 take a
combiner role for cluster 0 and 1, respectively. T3 acquires the lock and
performs dequeue operations. In contrast, T7 is waiting for the lock.
Non-combiner threads, T4 and T8, are waiting for the completion of
operations by the combiner. T5, T6, and T9 are adding their dequeue
requests to the list.

1914 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 2015

in the list (lines 40-42). The status of a request can be either
COMBINE, WAIT, or DONE. The first request is always in the
COMBINE state (lines 26 and 97), and the rest are initially in
the WAIT state (line 53). After the combiner processes the
requests, the status of each request is changed to DONE

(lines 74, 85, 96 and 98). At the end of the combining opera-
tion, the status of the last dummy request is set to COMBINE

for a subsequent dequeuer to take the role of a combiner.
Appending a new dummy request. We first insert a new

dummy request at the end of the per-cluster request list: we
update ReqTail to the new dummy request using SWAP

(line 55) and the old ReqTail’s rnext to the new dummy
request (line 56). The initial status and rnext of the new
dummy request are set to WAIT and null, respectively
(lines 53-54). Like the enqueue operation, since the SWAP

always succeeds, it does not require parameter tuning.
According to the status of old ReqTail, a thread takes the
role of a combiner when the status is COMBINE (line 41) or

waits for the completion of its request processing when the
status is WAIT (line 40).

Combiningdequeue operation. The execution of combiners
is coordinated by the global combiner lock, CombinerLock
(lines 65 and 99). An active combiner, which acquired the
lock, processes pending requests and changes the status of
each processed request to DONE for the waiting threads to
proceed (lines 74, 85, 96 and 98). Though a higher degree of
combining contributes higher combining throughput by
reducing the locking overhead, there is a possibility for a
thread to serve as a combiner for an unfairly long time. Espe-
cially, to prevent a combiner from traversing a continuously
growing list, we limit the maximum degree of combining to
MAX_COMBINE similarly to H-Queue [19]. In our experi-
ments, we set MAX_COMBINE to three times the number of
threads. After processing the requests, we update Head’s
next in contrast to other queues’ updating Head. If there are
at least two nodes in the queue, Head’s next is set to the

Fig. 3. The pseudo-code of the LECD queue.

MIN AND EOM: INTEGRATING LOCK-FREE AND COMBINING TECHNIQUES FOR A PRACTICAL AND SCALABLE FIFO QUEUE 1915

next of the last dequeued node (line 93). If the last non-
dummy node is dequeued and thus the queue is empty, we
update Head’s next to null and update Tail to Head

(lines 88 and 89). Head’s next is updated using a simple
store instruction since there is no contention. In contrast,
Tail should be updated using CAS due to contention with
concurrent enqueuers. However, there is no need to retry the
CAS when it fails. Since the CAS failure means that another
thread enqueues a node so that the queue is not empty any
more, we update Head s next to the next of the last
dequeued node (line 93). Also, the LECD queue performs
busy waiting to guarantee that all enqueued nodes are
dequeued (lines 67-69 and 91). Finally, we set the status of
the last dummy request to COMBINE for a subsequent deque-
uer of the cluster to take the role of a combiner (line 97).

Our per-cluster combining approach has important
advantages, even with the additional locking overhead.
First, since all concurrent dequeuers update the local
ReqTail, the SWAP of the ReqTail is more efficient
and does not generate cross-cluster traffic. Also, since a
combiner only accesses local requests in one cluster, fast
local memory accesses make the combiner more efficient.
Finally, notifying completion by changing the status to
DONE also prevents generation of cross-cluster traffic.

3.2 Memory Management

It is important to understand why our dequeue operation
updates Head’s next instead of Head. As we discussed in
Section 2.4, a dequeued node cannot be immediately freed
using a standard memory allocator because the node is
recycled as a dummy node and there are read/reclaim
races. On the other hand, in the use of our permanent dummy
node, Head invariably points to the permanent dummy
node by updating Head’s next instead of Head. Also, since
the privatization of Tail makes it only touchable by one
single thread and Head is accessed by a single threaded
combiner, there is no read/reclaim races. Therefore, it is
possible to efficiently implement the LECD queue even in C
or C++ with no need for a dedicated memory management
scheme. Moreover, our caller-allocated node enables appli-
cation developers’ further optimization of memory manage-
ment including embedding a node into its element.

3.3 Linearizability and Progress Guarantee

As stated earlier, our enqueue operation allows another
concurrent thread to enqueue over a node which is in a tran-
sient state. For example, in Fig. 4, when thread T1 is pre-
empted after updating Tail to X and before updating old
Tail’s next (between lines 32 and 33), thread T2 enqueues
a node Y over the X. Such independent execution among
concurrent enqueuers can maximize advantages of parallel
execution. However, if thread T3 tries to dequeue a node at

the same moment, the dequeue operation cannot be han-
dled before T1 completes the enqueue operation. If we
assume the queue is empty in this case, it would break the
linearizability of the queue: its sequential specification
should allow it to assume the queue contains at least one
node. Since the LECD queue performs busy waiting in this
case (lines 67-69 and 91), it is linearizable. The formal proof
will be described in Section 5.

Traditionally, most concurrent data structures are
designed to guarantee either the progress of all concurrent
threads (wait-freedom [25]) or the progress of at least one
thread (lock-freedom [25]). The key mechanism to guarantee
progress is that threads help each other with their operations.
However, such helping could impose large overhead even in
the case that a thread can complete without any help [36].
Therefore, many efforts has been made to develop more effi-
cient and simpler algorithms by loosening progress guarantee
[37] or not guaranteeing progress at all [12], [18], [19], [38].
Though the LECD queue is not non-blocking, it is starvation-
free since our enqueue operation will operate in a bounded
number of instructions. Moreover, since thewindow of block-
ing is extremely small (between lines 32 and 33), the blocking
occurs extremely rarely, and the duration, when it occurs, is
very short. We will present a formal proof of our progress
guarantee in Section 5 and measure how often such waiting
occurs under a high level of concurrency in Section 4.3.2.
Finally, it isworth noting that several operating systems allow
a thread to hint to the scheduler to avoid preemptions of that
thread [39]. Though themost likely use is to block preemption
while holding a spinlock, we could use it to reduce the possi-
bility of preemption during enqueue operation.

4 EVALUATION

4.1 Evaluation Environment

We evaluated the queue algorithms on a four-socket sys-
tem with four 10-core 2.0 GHz Intel Xeon E7-4850 process-
ors (Westmere-EX), where each core multiplexes two
hardware threads (40 cores and 80 hardware threads in
total). Each processor has a 256 KB per-core L2 cache and a
24 MB per-processor L3 cache. It forms a NUMA cluster
with an 8 GB local memory and each NUMA cluster com-
municates through a 6.4 GT/s QPI interconnect. The
machine runs 64-bit Linux Kernel 3.2.0, and all the codes
were compiled by GCC 4.6.3 with the highest optimization
option, -O3.

4.2 Evaluated Algorithms

We compare the LECD queues to the best performing queues
reported in recent literature: Fatourou and Kallimanis’ H-
Queue [19], which is the best performing combining-based
queue, and Morrison and Afek’s LCRQ and LCRQþH [16],
which are the best performing �86-dependent lock-free
queues. We also evaluated Michael and Scott’s lock-free MS
queue, which is the most widely implemented [1], [2], [3],
and their two-lock queue [10].

Since the performances of the LCRQ and LCRQþH are
sensitive to the ring sizes, as shown in [16], we evaluated the
LCRQ and LCRQþH in two different ring sizes, the largest

size with 217 nodes and the medium size with 210 nodes in
their experiments. Hereafter, (L) represents for the large ring

Fig. 4. A second node (Y) is enqueued over the first node (X) which is in
a transient state.

1916 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 2015

size, and (M) is the medium ring size. Also, hazard pointers
[7], [8], [23] were enabled for memory reclamation of rings.
For the queue algorithms which require locking, CLH locks
[40], [41] were used. For the H-Queue, MS queue, and the
two-lock queue, we used the implementation from Fatourou
and Kallimanis’ benchmark framework [42]. For the LCRQ
and LCRQþH, we used the implementation provided by the
authors [43].We implemented the LECD queue in C/C++. In
all the queue implementations, important data structures are
aligned to the cacheline size to avoid false sharing.

Though interaction between the queue algorithms and
memory management schemes are interesting, it is outside
the scope of this paper. Instead,we implemented a per-thread
freelist on top of the jemalloc [44] memory allocator. Our
freelist implementation has minimal runtime overhead at the
expense of the largest space overhead; it returns none of the
allocated memory to the operating system and does not use
atomic instructions. For the LECD queue, our benchmark
code allocates and deallocates nodes to impose roughly the
same amount ofmemory allocation overhead to the others.

To evaluate the queue algorithms in various workloads,
we run the following two benchmarks under two different
initial conditions, in which (1) the queue is empty and (2)
the queue is not empty (256 elements are in the queue):

� Enqueue-dequeue pairs. Each thread alternately per-
forms an enqueue and a dequeue operation.

� 50 percent enqueues. Each thread randomly performs an
enqueue or a dequeue operation, generating a ran-
dom pattern of 50 percent enqueue and 50 percent
dequeue operations.

After each queue operation, we simulate a random work-
load by executing a random number of dummy loop itera-
tions up to 64. Each benchmark thread is pinned to a
specific hardware thread to avoid interference from the OS
scheduler. For the queue algorithms, which need parameter
tuning, we manually found the best performing parameters
for each benchmark configuration. For example, in case of
the enqueue-dequeue pairs benchmark where a queue is
initially empty, we used the following parameters; in MS
queue, the lower bound and upper bound of exponential
backoff scheme were set to 1 and 22, respectively; in
LCRQþH, the yielding time was set to 110 microseconds for
the large ring and 200 microseconds for the medium ring.

In the rest of this section, we first investigate how effec-
tive our design decisions are in Section 4.3 and then com-
pare the LECD queue with other queue algorithms in
Section 4.4. Fig. 5 shows the throughputs of the queue algo-
rithms, and Fig. 6 shows the average throughput of the four
benchmark configurations on 80 threads. Fig. 6 shows that
the LECD queue performs best, followed by LCRQþH, H-
Queue, LCRQ, MS queue, and the two-lock queue. For fur-
ther analysis, we show the average CPU cycles spent in
memory stalls in Fig. 7 and the number of atomic instruc-
tions executed per operation in Fig. 8. Finally, to investigate
how enqueuers and dequeuers interact in the LECD queue,
we compare the degree of combining of the LECD queue
with that of the H-Queue in Fig. 9. Also, we compare the
total enqueue time and total dequeue time of our queues in
Fig. 10. Thoughwe did not show the results of all benchmark
configurations, the omitted results also showed similar

trends. We measured one million pairs of queue operations
and reported the average of ten runs.

4.3 Experimental Results of the LECD Queue

4.3.1 How Critical Is It to Exploit SWAP Primitive?

To verify the necessity of SWAP for achieving high scalabil-
ity, we simulated SWAP instructions of the LECD queue
using CAS retry loops in a lock-free manner. In our experi-
mental results, it is denoted as the LECD-CAS queue. As
Fig. 7 shows, in 80 threads, the CPU stall cycles for memory
are increased by 5.6 times, causing significant performance
reduction, as shown in Figs. 5 and 6; on average, perfor-
mance is degraded by 4.3 times in 80 threads.

4.3.2 Is Our Optimistic Assumption Valid?

As discussed in Section 3.3, we designed the LECD queue
based on the optimistic assumption; though an enqueuer
could block the progress of concurrent dequeuers, such
blocking will hardly occur and the period will be extremely
short, when it occurs, since the blocking window is
extremely small. To verify whether our assumption is valid
in practice, we run our benchmarks in 80 threads and mea-
sured the number of blocking occurrences for one million
operations and its percentage in CPU time. Excluding the
benchmark threads, about 500 threads were running in our
test machine. As we expected, Table 1 shows that the block-
ing is very limited even at a high level of concurrency. Espe-
cially, when queues are not empty, we did not observe
blocking. Even when queues are empty, the performance
impact of such blocking is negligible.

4.3.3 Effectiveness of the Per-Cluster Combining

To verify how our per-cluster dequeue combining is effec-
tive, we evaluate the performance of the LECD queue that
performs single global combining with no per-cluster opti-
mization. We denote its results as the LECD-NO-CLUSTER
queue in our experimental results. Since there is only one
combining thread in the single global combining, additional
locking used in the per-cluster combining is not required.
However, since the combiner processes requests from arbi-
trary clusters, it generates cross-cluster traffic and thus
degrades performance. Figs. 6 and 7 confirm this; on aver-
age, 3.2-fold the number of stall cycles cause a 2.9-fold per-
formance degradation in 80 thread.

4.4 Comparison with Other Algorithms

4.4.1 The Two-Lock Queue

In all benchmark configurations, the throughput of the two-
lock queue is the lowest (Figs. 5 and 6). Though the two-
lock queue executes only one atomic instruction per opera-
tion, which is the smallest, regardless of the level of concur-
rency (Fig. 8), and its CPU stall cycles for memory are lower
than that of the MS queue, the serialized execution results
in the slowest performance.

4.4.2 The MS Queue

In all lock-free queues, the parameter tuned versions are sig-
nificantly faster. The results of the MS queues show how
critical the parameter tuning is. As Figs. 7 and 8 show, the

MIN AND EOM: INTEGRATING LOCK-FREE AND COMBINING TECHNIQUES FOR A PRACTICAL AND SCALABLE FIFO QUEUE 1917

backoff scheme reduces CPU stall cycles for memory and
atomic instructions per operation by 4.2 times and 1.7 times,
respectively. As a result, the MS queue with the backoff
scheme has a 1.8 times greater performance than one with-
out it. Even using the backoff scheme, since CAS retry loops
in the MS queue make Head and Tail contended hot spots,
the stall cycles of the MS queue is 16 times larger than that

of the LECD queue, and the LECD queue outperforms it by
14.3 times.

4.4.3 The LCRQ and LCRQ+H

The hierarchical optimization of the LCRQ can significantly
improve the performance. In LCRQþH, each thread first
checks the global cluster ID. If the global cluster ID is not the

Fig. 6. Average throughputs of the four benchmark configurations on
80 threads.

Fig. 7. Average CPU cycles spent in memory stalls of the four bench-
mark configurations on 80 threads. Y-axis is in log scale.

Fig. 5. Throughputs of the queue algorithms for the benchmark configurations. The LECD-CAS queue is the LECD queue in which SWAP is simulated
using CAS in a lock-free way. The LECD-NO-CLUSTER queue is the LECD queue which performs not per-cluster combining but global combining
using a single request list. For LCRQ and LCRQþH, suffix (L) denotes that a queue is configured to use the large ring with 217 nodes, and suffix (M)
denotes that a queue is configured to use the medium ring with 210 nodes.

1918 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 2015

same as the running cluster ID of the thread, the threadwaits
for a while (i.e., voluntarily yielding), and then updates the
global cluster ID to its cluster ID, using CAS, and executes
the LCRQ algorithm. Since it clusters operations from the
same cluster for a short period, this process can reduce cross-
cluster traffic and improve performance.

In our experimental results, LCRQþH outperforms
LCRQ and the queues with the larger ring are faster.
Although the hierarchical optimization and the smaller ring
size slightly increase the number of atomic instruction per
operation (by up to 7 percent in Fig. 8), we observed that
the CPU stall cycles for memory more directly affects per-
formance than the increased atomic instructions (Fig. 7).
When a ring is the medium size (M), the whole of the ring
fits in a per-core L2 cache. That increases the stall cycles by
up to 2.4 times since updating an L2 cacheline is very likely
to trigger invalidating shared cachelines in other cores. As a
result, performances of LCRQ (M) and LCRQþH (M) are
about 40 percent slower than those of LCRQ (L) and
LCRQþH (L). The hierarchical optimization decreases the
stall cycles by 7.5 times and thus improves performance by
3.3 times. However, as Fig. 5 shows, in addition to the
drawback of manually tuning the yielding time, the
LCRQþH shows great variance in performance according
to the benchmark. In the enqueue-dequeue pairs bench-
mark, LCRQþH outperforms LCRQ in all levels of concur-
rency. But, in the 50 percent enqueues benchmark,
LCRQþH (M) shows performance collapse at a low level of
concurrency. If there are many concurrent operations in the
currently scheduled cluster, the voluntary yielding helps
improve performance by aggregating operations in the
same cluster and reducing cross-cluster traffic. Otherwise, it
is simply a waste of time. That is why LCRQþH (M) shows
performance collapse at a low level of concurrency.

LCRQþH (M) shows the lowest throughput, 0.17 Mops/
sec, in eight threads of the 50 percent enqueues benchmark,
and 98.7 percent of CPU time is spent on just yielding. This
shows that the best performing yielding time is affected by
many factors, such as arrival rate of requests, cache behav-
ior, cost of contention, level of contention, and so on. The
LECD queue outperforms LCRQ (L) and LCRQ (M) by 3.3
times and 4.7 times, respectively. Unlike LCRQþH, LECD
queue shows little variance in performance according to the
benchmark. Also, in some benchmark configurations, it
shows similar or better performance to LCRQþH without
manual parameter tuning.

4.4.4 The H-Queue

The LECD outperforms the H-Queue in all cases, and in
80 threads, the average throughput of the LECD queue is
64 percent higher than that of the H-Queue. In the LECD
queue, enqueuers can be benefited by parallel execution
since only the SWAP operation is serialized by H/W. So, as
Fig. 10 shows, enqueuers consume time in only 1=53 deque-
uers. Thus, most threads wait for the completion of
dequeue operation by the combiner, as confirmed by the
high combining degree in Fig. 9: in 80 threads, the average
degree of combining in the LECD queue is ten times higher
than that of the H-Queue. The high combining degree even-
tually reduces the number of lock operations among per-
cluster combiners. So, the reduced locking overhead con-
tributes to reduce the number of atomic instructions per
operation in Fig. 8, and thus finally contributes to achieve
higher performance.

5 CORRECTNESS

Our model of multi-threaded computation follows the line-
arizability model [45]. We treat basic load, store, SWAP,
and CAS operations as atomic actions and thus can use the
standard approach of viewing them as if they occurred
sequentially [46]. We prove that the LECD queue is linear-
izable to the abstract sequential FIFO queue [47] and it is
starvation-free.

5.1 Linearizability of the LECD Queue

Definition 1. The linearization points for each of the queue opera-
tions are as follows:

Fig. 8. Number of atomic instructions per operation in the enqueue-
dequeue pairs benchmark with an initial empty state.

Fig. 9. Average degree of combining per operation.

Fig. 10. Total enqueue and dequeue times of the LECD queue on
80 threads. P and 50 represent benchmark types of enqueue-dequeue
pairs and 50 percent enqueues benchmarks, respectively. E and NE rep-
resent the empty and non-empty initial queue conditions, respectively.
The scale of y 2-axis is 10-fold greater than that of y 1-axis.

MIN AND EOM: INTEGRATING LOCK-FREE AND COMBINING TECHNIQUES FOR A PRACTICAL AND SCALABLE FIFO QUEUE 1919

� Enqueue operation is linearized in line 32.
� Unsuccessful dequeue operation is linearized at the

execution of its request in line 71 by the active
combiner.

� Successful dequeue operation is linearized at the exe-
cution of its request in line 77 by the active combiner.

Definition 2. After executing the SWAP in line 32 and before exe-
cuting line 33, the node and old_tail are considered to be
involved in the middle of the enqueue operation.

Definition 3.When the status of a thread is COMBINE so that the
thread can execute the combine_dequeuemethod (lines 61-
99), the thread is called a dequeue combiner, or simply a
combiner.

Definition 4. An active dequeue combiner, or simply an
active combiner, is a combiner which holds CombinerLock
in line 65.

Definition 5. Combined dequeue requests, or simply com-
bined requests, are an ordered set of requests processed in
lines 66-86 for a single invocation of a combine_dequeue

method.

Lemma 1. Head always points to the first node in the linked list.

Proof. Head always points to the initially allocated per-
manent dummy node and is never updated after
initialization. tu

Lemma 2. The enqueue operation returns in a bounded number
of steps.

Proof. Since the enqueue operation has no loop, it returns
in a bounded number of steps. tu

Lemma 3. Nodes are ordered according to the order of the lineari-
zation points of the enqueue operations.

Proof. The SWAP in line 32 guarantees that Tail is atomically
updated to a new node and only one thread can access its
old value, old_tail. The privately owned old_tail’s
next is set to the new node. Therefore, nodes are totally
ordered by the execution order of line 32. tu

Lemma 4. All linearization points are in between their method
invocations and their returns.

Proof. It is obvious for the enqueue operation and the
dequeue operation, where a thread is a combiner. For the
dequeue operation, where a thread is not a combiner,
since the thread waits until the status of its request
becomes DONE (line 40) and the combiner sets the status of
a processed request to DONE after passing the linearization
point of each request (lines 74, 85, 96 and 98), its lineariza-
tion point is in between the invocation and the return. tu

Lemma 5. Tail always points to the last node in the linked list.

Proof. In the initial state, Tail points to the permanent
dummy node, which is the only one node in the list
(line 23). In enqueuing nodes, the SWAP in line 32 atom-
ically updates Tail to a new node. When the queue
becomes empty, a successful CAS in line 89 updates
Tail to Head, which always points to the dummy node
by Lemma 1. tu

Lemma 6. An active dequeue combiner deletes nodes from the sec-
ond node in the list in the order of enqueue operations.

Proof. An active combiner starts node traversal from the
second node (i.e., Head’s next) until all pending
requests are processed or the number of processed
requests is equal to MAX_COMBINE (lines 66-86). Since
the combiner traverses via next (lines 68 and 78), by
Lemma 3, the traverse order is the same as that of
enqueue operations. If a node in the current iteration is
the same as Tail (lines 69-70), the queue becomes
empty, so ret of the request is set to false (line 71).
Otherwise, the dequeued node is returned with setting
ret to true (lines 72-79). After the iteration, if the queue
becomes empty, the active combiner updates the pointer
to the second node to null in line 88 and tries to move
Tail to Head using CAS in line 89. If the CAS fails (i.e.,
another node is enqueued after the iteration), the comple-
tion of enqueuing the node waits in line 91. By Lemma 2,
the completion of the enqueue operation is guaranteed.
If the queue does not become empty, the pointer of the
second node is updated to the next of the last dequeued
node in line 93. In all cases, the update of the Head’s
next is protected by CombinerLock. tu

Lemma 7. An enqueued node is dequeued after the same number
of dequeue operations as that of enqueue operations is
performed.

Proof. From Definition 2 and Lemmas 1 and 6, when the sec-
ond node in the list is in the middle of the enqueue opera-
tion, the queue is not empty but the Head’s next is null.
Since the dequeue operation waits until the enqueue

operation completes (lines 67-69), the nodes in the middle
of the enqueue operation are never dequeued, and an
enqueued node is dequeued after the same number of
dequeue operations as that of enqueue operations is
performed. tu

Theorem 1. The LECD queue is linearizable to a sequential FIFO
queue.

Proof. From Lemmas 3, 6 and 7, the order of the enqueue

operations is identical to the order of its dequeue

TABLE 1
Performance Impact of Preemption in the Middle of enqueue Operation

Benchmark # of blocking/Mops % of the blocking time

enq-deq pairs, empty 0.53 1:12 � 10�5%
enq-deq pairs, non-empty 0.0 0.0%
50%-enqs, empty 0.07 6:25 � 10�8%
50%-enqs, non-empty 0.0 0.0%

1920 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 2015

operations, so the queue is linearizable. From Lemma 5,
Tail is guaranteed to be set to Head when the queue is
empty, so the queue is also linearizable with respect to
unsuccessful dequeue operations. tu

5.2 Liveness of the LECD Queue

Lemma 8. Adding a new request returns in a bounded number of
steps.

Proof. Since the add_request method (lines 50-57) has no
loop, it returns in a bounded number of steps. tu

Lemma 9. If a thread first adds a request to the per-cluster request
list after the combining operation, the thread becomes a com-
biner for the cluster.

Proof. The decision whether or not to take the role of com-
biner is determined by the status of the previous request
(lines 39-41, 55-57). After the initialization, since the sta-
tus of the first request for each cluster is set to COMBINE

in line 26, the first dequeuer for each cluster becomes a
combiner. Since the status of the next request of com-
bined requests is set to COMBINE in line 97 before an
active combiner completes its operation, a thread that
adds a request for the cluster just after the combining
becomes a new combiner. tu

Lemma 10. The combining dequeue operation (combine_-
dequeue method) is starvation-free.

Proof. Assuming the CombinerLock implementation is
starvation-free, acquiring the CombinerLock in the
active combiner is also starvation-free. In the combining
operation, the number of combined requests is limited to
MAX_COMBINE and the other two loops wait for the com-
pletion of the enqueue operation, which is wait-free by
Lemma 2. By Lemma 9, after the combining operation,
the subsequent dequeuer is guaranteed to become the
next combiner. Therefore, the combining operation is
starvation-free. tu

Theorem 2. The LECD queue is starvation-free.

Proof. By Lemma 2, the enqueue operation is wait-free.
From Lemmas 4, 8, and 10, the dequeue operation is
starvation-free. Therefore, the LECD queue is starva-
tion-free. tu

6 CONCLUSION AND FUTURE DIRECTIONS

We have presented the LECD queue, which is a linearizable
concurrent FIFO queue. Neither parameter tuning nor a
dedicated memory management scheme is needed. The
advantage of these features is that they can be used for
libraries in which parameter tuning for particular combina-
tions of workloads and machines are infeasible and more
flexible memory management for application developers’
further optimization is needed. The key to our design in the
LECD queue is to synergistically use lock-free and combin-
ing approaches. As our experimental results show, in the
80-thread average throughput, the LECD queue outper-
forms the MS queue, whose backoff parameters are tuned
in advance, by 14.3 times; the H-Queue, which is the best
performing combining-base queue, by 1.6 times; and the

LCRQþH, whose design is �86-dependent and whose
parameter is tuned in advance, by 1.7 percent.

Our lessons learned have implications for future direc-
tions. First of all, we expect that integrating lock-free
approaches and combining approaches could be an alterna-
tive way in designing concurrent data structures. As the
core count increases, CAS failure on hot spots is more likely
to happen so the architecture-level support of atomic primi-
tives, such as SWAP, that always succeed is critical. Also,
though we showed the effectiveness of the LECD queue, the
combiner will become a performance bottleneck at the very
high concurrency level (e.g., hundreds of cores). To resolve
this, we have a plan to extend the LECD queue to have par-
allel combiner threads.

ACKNOWLEDGMENTS

This work was supported by the IT R&D program of MKE/
KEIT [10041244, SmartTV 2.0 Software Platform]. This
research was supported by the Ministry of Science, ICT &
Future Planning (MSIP), Korea, under the Information Tech-
nology Research Center (ITRC) support program (NIPA-2014
(H0301-14-1020)) supervised by the National IT Industry Pro-
motion Agency (NIPA). Young Ik Eom is the corresponding
author of this paper.

REFERENCES

[1] D. Lea. JSR 166: Concurrency utilities. (2014) [Online]. Available:
http://gee.cs.oswego.edu/dl/jsr166/dist/docs/

[2] Boost C++ Libraries. boost::lockfree::queue. (2014) [Online].
Available: http://www.boost.org/doc/libs/1_54_0/doc/html/
boost/lockfree/queue.html

[3] liblfds.org. r6.1.1:lfds611_queue. (2014) [Online]. Available:
http://www.liblfds.org/mediawiki/index.php?title=r6.1.1:
Lfds61_queue

[4] C. Min and Y. I. Eom, “DANBI: Dynamic scheduling of irregular
stream programs for many-core systems,” in Proc. 22nd Int. Conf.
Parallel Archit. Compilation Tech., 2013, pp. 189–200.

[5] D. Sanchez, D. Lo, R. M. Yoo, J. Sugerman, and C. Kozyrakis,
“Dynamic fine-grain scheduling of pipeline parallelism,” in Proc.
Int. Conf. Parallel Archit. Compilation Tech., 2011, pp. 22–32.

[6] M. Desnoyers and M. R. Dagenais, “Lockless multi-core high-
throughput buffering scheme for kernel tracing,” SIGOPS Oper.
Syst. Rev., vol. 46, vol. 3, pp. 65–81, Dec. 2012.

[7] M. M. Michael, “Hazard pointers: Safe memory reclamation for
lock-free objects,” IEEE Trans. Parallel Distrib. Syst., vol. 15, vol. 6,
pp. 491–504, Jun. 2004.

[8] M. Herlihy, V. Luchangco, and M. Moir, “The repeat offender
problem: A mechanism for supporting dynamic-sized lock-free
data structures,” Sun Microsyst., Inc., Mountain View, CA, USA,
Tech. Rep. SMLI TR-2002-112, 2002.

[9] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole,
“Performance of memory reclamation for lockless syn-
chronization,” J. Parallel Distrib. Comput., vol. 67, vol. 12, pp. 1270–
1285, Dec. 2007.

[10] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms,” in Proc. 15th
Annu. ACM Symp. Principles Distrib. Comput., 1996, pp. 267–275.

[11] E. Ladan-Mozes and N. Shavit, “An optimistic approach to lock-
free FIFO queues,” Distrib. Comput., vol. 20, no. 5, pp. 323–341,
2008.

[12] C. Min, H. K. Jun, W. T. Kim, and Y. I. Eom, “Scalable cache-
optimized concurrent FIFO queue for multicore architectures,”
IEICE Trans. Inf. Syst., vol. E95-D, no. 12, pp. 2956–2957, 2012.

[13] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit, “Using elimina-
tion to implement scalable and lock-free FIFO queues,” in Proc.
17th Annu. ACM Symp. Parallelism Algorithms Archit., 2005,
pp. 253–262.

[14] M. Hoffman, O. Shalev, and N. Shavit, “The baskets queue,” in
Proc. 11th Int. Conf. Principles Distrib. Syst., 2007, pp. 401–414.

MIN AND EOM: INTEGRATING LOCK-FREE AND COMBINING TECHNIQUES FOR A PRACTICAL AND SCALABLE FIFO QUEUE 1921

[15] A. Agarwal and M. Cherian, “Adaptive backoff synchronization
techniques,” in Proc. 16th Annu. Int. Symp. Comput. Archit., 1989,
pp. 396–406.

[16] A. Morrison and Y. Afek, “Fast concurrent queues for x86 process-
ors,” in Proc. 18th ACM SIGPLAN Symp. Principles Practice Parallel
Program., 2013, pp. 103–112.

[17] Y. Oyama, K. Taura, and A. Yonezawa, “Executing parallel pro-
grams with synchronization bottlenecks efficiently,” in Proc. Int.
Workshop Parallel Distrib. Comput. Symbolic Irregular Appl., 1999,
pp. 182–204.

[18] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir, “Flat combining
and the synchronization-parallelism tradeoff,” in Proc. 22nd ACM
Symp. Parallelism Algorithms Archit., 2010, pp. 355–364.

[19] P. Fatourou and N. D. Kallimanis, “Revisiting the combining syn-
chronization technique,” in Proc. 17th ACM SIGPLAN Symp. Prin-
ciples Practice Parallel Program., 2012, pp. 257–266.

[20] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir, “Scalable flat-
combining based synchronous queues,” in Proc. 24th Int. Conf.
Distributed Comput., 2010, pp. 79–93.

[21] M. S. Moir, V. Luchangco, and M. Herlihy, “Single-word lock-free
reference counting,” U.S. Patent 7299242, Nov. 2007.

[22] D. L. Detlefs, P. A. Martin, M. S. Moir, and G. L. Steele, JR., “Lock
free reference counting,” U.S. Patent 6993770, Jan. 2006.

[23] M. M. Michael, “Method for efficient implementation of dynamic
lock-free data structures with safe memory reclamation,” U.S. Pat-
ent 2004/0107227 A1, Jun. 2004.

[24] R. K. Treiber, “Systems programming: Coping with parallelism,”
IBM Almaden Res. Center, San Jose, CA, Tech. Rep. RJ-5118, 1986.

[25] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program.
Lang. Syst., vol. 13, vol. 1, pp. 124–149, Jan. 1991.

[26] P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie, “Distributing hot-spot
addressing in large-scale multiprocessors,” IEEE Trans. Comput.,
vol. TC-36, no. 4, pp. 388–395, Apr. 1987.

[27] J. M. Mellor-Crummey, “Concurrent queues: Practical fetch-and-F
algorithms,” Tech. Rep. 229, Comput. Sci. Dept., Univ. Rochester,
Rochester, NY, USA,Nov. 1987.

[28] D. Vyukov. Intrusive MPSC node-based queue. (2014) [Online].
Available: http://www.1024cores.net/home/lock-free-algorithms/
queues/intrusive-mpsc-node-based-queue

[29] M. Desnoyers and L. Jiangshan. LTTng Project: Userspace RCU.
(2014) [Online]. Available: http://lttng.org/urcu

[30] P. McKenney and J. Slingwine, “Apparatus and method for
achieving reduced overhead mutual exclusion and maintaining
coherency in a multiprocessor system utilizing execution history
and thread monitoring,” US Patent 5442758, Aug. 15, 1995.

[31] P. E. McKenney and J. D. Slingwine, “Read-copy update: Using
execution history to solve concurrency problems,” in Proc. Int.
Conf. Parallel Distrib. Comput. Syst., 1998, pp. 509–518.

[32] A. Arcangeli, M. Cao, P. E. McKenney, and D. Sarma, “Using
read-copy-update techniques for system V IPC in the Linux 2.5
Kernel,” in Proc. USENIX Annu. Tech. Conf., FREENIX Track, 2003,
pp. 297–310.

[33] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and J.
Walpole, “User-level implementations of read-copy update,”
IEEE Trans. Parallel Distrib. Syst., vol. 23, vol. 2, pp. 375–382, Feb.
2012.

[34] K. Fraser, “Practical lock-freedom,” Ph.D. dissertation, Comput.
Laboratory, Cambridge Univ., Cambridge, U.K., 2004.

[35] D. Hendler, N. Shavit, and L. Yerushalmi, “A scalable lock-free
stack algorithm,” in Proc. 16th Annu. ACM Symp. Parallelism
Algorithms Archit., 2004, pp. 206–215.

[36] A. Kogan and E. Petrank, “A methodology for creating fast wait-
free data structures,” in Proc. 17th ACM SIGPLAN Symp. Principles
Practice Parallel Program., 2012, pp. 141–150.

[37] M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free syn-
chronization: Double-ended queues as an example,” in Proc. 23rd
Int. Conf. Distrib. Comput. Systems, 2003, pp. 522–529.

[38] M. Desnoyers, “Proving the correctness of nonblocking data
structures,”Queue, vol. 11, vol. 5, pp. 30–43, May 2013.

[39] Oracle. Man pages section 3: Basic library functions: Sched-
ctl_start(3C). (2014) [Online]. Available: http://docs.oracle.com/
cd/E19253-01/816-5168/6mbb3hrpt/index.html

[40] T. Craig, “Building FIFO and priority-queuing spin locks from
atomic swap,” Dept. Comput. Sci., Univ. Washington, Seattle,
WA, USA, Tech. Rep. 93-02-02, 1993.

[41] P. S. Magnusson, A. Landin, and E. Hagersten, “Queue locks on
cache coherent multiprocessors,” in Proc. 8th Int. Symp. Parallel
Process., 1994, pp. 165–171.

[42] N. D. Kallimanis. Sim: A highly-efficient wait-free universal
construction. (2014) [Online]. Available: https://code.google.
com/p/sim-universal-construction/

[43] LCRQ source code package. (2014) [Online]. Available: http://
mcg.cs.tau.ac.il/projects/lcrq/lcrq-101013.zip

[44] J. Evans. Scalable memory allocation using jemalloc. (2014)
[Online]. Available: https://www.facebook.com/notes/
facebook-engineering/scalable-memory-allocation-using-
jemalloc/480222803919

[45] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness con-
dition for concurrent objects,” ACM Trans. Program. Lang. Syst.,
vol. 12, vol. 3, pp. 463–492, Jul. 1990.

[46] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit,
“Atomic snapshots of shared memory,” J. ACM, vol. 40, vol. 4,
pp. 873–890, Sep. 1993.

[47] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen, Introduc-
tion to Algorithms. Cambridge, MA, USA: MIT Press, 2001.

Changwoo Min received the BS and MS
degrees in computer science from Soongsil Uni-
versity, Korea, in 1996 and 1998, respectively,
and the PhD degree from the College of Informa-
tion and Communication Engineering, Sung-
kyunkwan University, Korea, in 2014. From 1998
to 2005, he was a research engineer in Ubiqui-
tous Computing Lab (UCL) of IBM Korea. Since
2005, he has been a research engineer at Sam-
sung Electronics. His research interests include
parallel and distributed systems, storage sys-

tems, and operating systems.

Young Ik Eom received the BS, MS, and PhD
degrees from the Department of Computer Sci-
ence and Statistics, Seoul National University in
Korea, in 1983, 1985, and 1991, respectively.
From 1986 to 1993, he was an associate profes-
sor at Dankook University, Korea. He was also a
visiting scholar in the Department of Information
and Computer Science at the University of Cali-
fornia, Irvine from September 2000 to August
2001. Since 1993, he has been a professor at
Sungkyunkwan University, Korea. His research

interests include parallel and distributed systems, storage systems, vir-
tualization, and cloud systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1922 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

