
Resource Redundancy Elimination by Bridging the
Semantic Gap in Virtualized Systems

Inhyeok Kim#1, Changwoo Min#2, Young Ik Eom#3
#School of Information and Communication Eng., Sungkyunkwan University

300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Korea
1kkojiband@ece.skku.ac.kr
2multics69@ece.skku.ac.kr

3yieom@ece.skku.ac.kr
Abstract— Traditional virtualization technologies have been used
to provide multiple virtual environments on a physical
environment by running multiple guest operating systems. In
virtualized systems, deep semantic gaps which cause space and
access redundancies of virtual resources exist between the guest
and the host. We propose a novel host-based file system that
eliminates memory and storage redundancy on the virtualized
environments by bridging the semantic gap between the guest
and the host. It eliminates the redundant resources in guest and
host through host file system sharing. Our experiments show how
much the redundancy is eliminated by using the host-based file
system. As a result, the performance of the guest file system is
improved due to pass-through guest block device layer.
Keywords— Virtualization, Semantic gap, Resource redundancy

I. INTRODUCTION
The virtualization technologies, such as emulation, para- and
full-virtualization, have deep semantic gap between the guest
and the host due to the layered approach in the virtualized
systems. Such semantic gap may cause several kinds of
resource redundancies. Especially, memory and storage
redundancies which degrade the utilization that the resources
of same contents coexist on the multiple guests limit the
scalability of the virtualized systems [1, 2]. In order to reduce
memory redundancy, previous studies have proposed the
content-based page sharing [3] and the sharing-aware block
device [4]. However, they used whole memory scanning or
the location on the virtual block device file, not using the
guest’s logical information because of the semantic gap. We
propose a host-based file system that eliminates memory and
storage redundancies by bridging the semantic gap. As we will
show in our experiments, our proposed file system supports
efficient page sharing and pass-through virtual block devices.
The rest of the paper is organized as follows. In Section 2, we
define resource redundancy. Related work is discussed in
Section 3. Section 4 describes the proposed scheme in detail.
Section 5 presents the evaluation results. Finally, Section 6
concludes the paper.

II. RESOURCE REDUNDANCY & PREEMPTION
The traditional virtualization technologies have supported
unmodified guest which recognizes the virtual machine as the
real machine like as all resources only are owned by self.
These approaches make deep semantic gaps which cause
several resource redundancies and preemption. At first, after
the guest accesses some type of virtual resources, the host

should access the physical resources corresponding to the
virtual resources. This situation is called by access
redundancy have problem with overlapping accesses to one
physical resource. And next, the time-shared resources such as
CPU and network device have no space redundancy because
the guest uses exclusively those resources normally based on
scheduling by usage time. However the space-shared
resources which are collaboratively allocated to the guest have
some space redundancy by the semantic gap occurring by no
communication between the guests. And in similar situation,
the resource preemption can be occurred that the guest who
has no needs or low priority owns the resource.

III. RELATED WORK
VMware described page sharing technique employed in
VMware ESX server [3]. It periodically scans the physical
memory of guests to detect page sharing opportunities.
However, because of high scanning cost, the scanning interval
should be long enough to keep the runtime overhead low. In
the other hand, short-live page sharing opportunities cannot be
detected due to coarse-grained scanning.

Satori [4] is a sharing-aware block device for efficient page
sharing in virtualized environment. It can detect short-live
sharing opportunities with low cost. However, in Satori, the
efficient page cache sharing can be supported only when
guests share the same file system image, because Satori
checks sharing opportunities using block location on the
shared file system image. So if a block is written once using
the copy-on-write technique, the block lose cheap sharing
opportunity and is shared using the content-based page
sharing scheme since then.

VAMOS [5] optimizes I/O virtualization overhead, which
runs some part of middleware on the host to reduce the guest-
host switches. It provided new interface between guest and
host for the database. It was applied to MySQL. Like this
approach, the higher level interface can cut down the number
of communication between components, but the interface is
specific to the middleware. Therefore, this approach
accompanies high development and maintenance cost.

IV. HOST-BASED FILE SYSTEM
We proposed the host-based file system, named as MyFS to
reduce memory and storage space redundancies and storage
access redundancies. Key idea is to eliminate the semantic gap
between the guest and the host by using pass-through virtual

block device on the guest. In previous work, the host can only
see the raw disk image of guest’s virtual block device.
However in our proposed approach the host can see same
logical structure of the file system used in guest. So, the host-
based file system can support file-level page cache sharing
using the logical information without expensive memory
scanning by the host.

As Fig. 1 shows, in the case of the general file system, the

guest should mount the file system on virtual block device,
but the guest using the host-based file system, do not mount
the file system on the guest, instead the guest directly accesses
the part of the file system mounted on the host. To achieve
this approach, we implemented some specific functions and
data structures for using the host file system information to
handle file related operations such as file open/close and page
cache mapping which are required to the file system by the
Linux virtual file system on the guest. The one of important
thing which is required by the Linux virtual file system is the
inode number which is unique identifier for each file. The
general file system on virtual block device has its own inode
table, but the host-based file system has no inode table,
instead uses file descriptors of the guest process on the host
which are acquired to open the file by the requirement of the
host-based file system. And next, the page caches are mapped
directly to the host page caches using the inode number which
is the file descriptor in the host. Through this approach, we
can easily eliminate the page caches and storage redundancies
between the guest and host, and also the host can support page
cache and storage sharing between the guests.

V. EVALUATION
We first evaluated the performance improvement through the
access redundancy elimination of the host-based file system.
The experiment used five real workloads, such as tar and
md5sum. The Fig. 2 presents the result that the host-based file
system offers about 5~30% better performance than the
general file system. Then we measured the memory and IO
usage of both cases through reading a 300 MB file. In Fig. 3,
the cached size means the host-level page cache size for the
virtual block device file and the shared files, and the buffer
size means the host-level anonymous page for the virtual
RAM of the guest. As you can see, the cached size of both
cases was incremented by almost same with 300 MB, but in
the case of the buffer size, the general file system used more
than the host-based file system. Because the host-based file
system does not request the guest-level page cache, instead
shares the host-level page cache. However the general file
system should allocate the guest-level page cache using own

Fig. 2 (a) HFS vs GFS vs MyFS real benchmark

(b) GFS vs MyFS memory usage (c) GFS vs MyFS io usage

virtual RAM. The Fig. 4 shows the result of two consecutive
experiments to read a 300 MB file. This experiment shows the
host-based file system makes IO requests only at first period,
but the general file system makes IO requests at both periods.
Because the general file system led to flush many page caches
due to memory space redundancy occurred by the guest-level
page caches.

VI. CONCLUSIONS
We proposed the host-based file system to eliminate memory
and storage redundancy on virtualized environments. Our
scheme eliminated the semantic gap between the host and
guest. So the host and guest share logical file system
information, therefore the host can make a decision for
resource sharing easier than the guest file system using virtual
block device. We showed that the host-based file system have
good performance and low memory usage through three
experiments.

ACKNOWLEDGMENT
This research was supported by Future-based Technology
Development Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of
Education, Science and Technology (2010-0020730).

REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” Proc. Of 9th ACM Symposium on Operating Systems
Principles, 2003.

[2] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Geiger:
Monitoring the buffer cache in a virtual machine environment,” Proc.
Of 12th Architectural Support for Programming Languages and
Operating Systems, 2006.

[3] C. A. Waldspurger, “Memory resource management in VMware ESX
server,” Proc. Of 5th USENIX symposium on Operating System Design
and Implementation, 2002.

[4] G. Miło´s, D. G. Murray, S. Hand, and M. A. Fetterman, “Satori:
Enlightened page sharing,” USENIX Annual Technical Conference,
2009.

[5] A. Gordon, M. Ben-Yehuda, D. Filimonov, and M. Dahan, “VAMOS:
Virtualization aware middleware,” 3rd Workshop on I/O Virtualization,
2011.

Fig. 1 Host-based file system architecture

