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Datacenters adopting RDMA

To achieve good performance, datacenter applications require the network to 
deliver

➢ high throughput

➢ low latency

[1] https://www.datacenterknowledge.com/archives/2015/06/17/rdma-replaces-tcpip-in-linbits-data-replication-tool

[2] https://www.nextplatform.com/2018/03/27/in-modern-datacenters-the-latency-tail-wags-the-network-dog/

Within datacenters RDMA deployment  
✓ high throughput and low latency 
✓ drop in RDMA hardware prices

https://www.datacenterknowledge.com/archives/2015/06/17/rdma-replaces-tcpip-in-linbits-data-replication-tool
https://www.nextplatform.com/2018/03/27/in-modern-datacenters-the-latency-tail-wags-the-network-dog/


Remote direct memory access (RDMA)

➢ enables direct access to memory of a remote machine

➢ low latency (1 µs)

➢ kernel bypass + CPU bypass

user buffer NIC NIC user buffer

Node 1 Node 2

DMA DMA
(1) (2) (3)
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➢ RDMA NIC caches QP state in its memory, so 
|connected transport| > |datagram transport|

➢ NIC faces cache thrashing as state increases
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Large cluster RDMA scalability challenges

➢ Non-scalable RC
➢+ Provides one-sided ops

➢ - Limited on-chip memory on the RDMA NIC

➢ Limited UD functionality:
➢+ Enables one-to-many communication

➢ - Lacks CPU-efficient one-sided ops

Which RDMA transport to use for scalable communication ?
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➢ - Limited on-chip memory on the RDMA NIC

➢ Limited UD functionality:
➢+ Enables one-to-many communication
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Which RDMA transport to use for scalable communication ?Only RC Only UD Hybrid 

FaRM [NSDI 14, SOSP 15]
Storm [SYSTOR 19]

ScaleRPC [EuroSys 19]

FaSST [OSDI 16]
eRPC [NSDI 19]

HERD [SIGCOMM 14] (UC + UD)
DrTM+H [OSDI 18] (RC + UD)



Scalability comparison of RC vs UD

Benchmark setup: 1 server with increasing clients

Each client issues
➢ a 16B one-sided read from server memory (RC) 
➢ a 16B RPC with server (UD)

*  each machine has a Mellanox ConnectX-5 100 Gbps NIC
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Connection scalability with RDMA full flexibility?

Goals:

➢ Maintain connection scalability

➢ Expose all RDMA features, i.e., versatility

➢Minimal software-induced overheads
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Goals:

➢ Maintain connection scalability

➢ Expose all RDMA features, i.e., versatility

➢Minimal software-induced overheads

FLOCK: An RDMA communication library



FLOCK 

➢ Uses RC
+ Exposes all RDMA capabilities

➢ Uses QP sharing among threads[1,2]

+ Uses FLOCK synchronization for connection scalability

➢ Introduces symbiotic send-recv scheduling
+ A cooperative scheduling policy between sender and receiver

+ Enables efficient network resource allocation and utilization at the end-hosts

[1] FaRM : Fast remote memory, NSDI 2014

[2] No compromises : distributed transactions with consistency, availability, and performance, SOSP 2015
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➢ Receiver-side QP Scheduler dynamically activates/deactivates 
QPs on a per-sender basis to avoid NIC cache pressure

➢ Sender-side Thread scheduler multiplexes active QPs among 
application threads



But isn’t QP sharing bad for performance 

QP sharing among threads is detrimental to performance[1,2]

➢ Low parallelism

➢ High synchronization overheads

FLOCK synchronization overcomes these challenges

➢ Threads sharing a QP progress concurrently with minimal synchronization

➢ Coalesces smaller messages utilizing network bandwidth + CPU efficiently

[1] FaRM : Fast remote memory, NSDI 2014

[2] FaSST : Fast, Scalable and Simple Distributed Transactions with Two-Sided RDMA Datagram RPCs, OSDI 2016
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FLOCK synchronization enables
➢ low synchronization overheads for QP sharing
➢ concurrent progress of threads and fairness in terms of 

their arrival order
➢ efficient network utilization reducing small messages 

sent due to coalescing
➢ fewer CPU cycles for MMIO operations due to 

reduction in messages exchanged 



Performance-Scalability Tradeoff

RDMA networks face a tradeoff between performance and scalability

FLOCK aims to resolve this tradeoff using symbiotic send-recv scheduling

Configuration Performance Scalability

Threads using dedicated QPs
✓

More parallelism within RDMA NIC



Limited NIC cache

Threads sharing QP


Hampers performance due to 
synchronization overheads

✓

Fewer NIC cache misses



Receiver-side QP Scheduling

➢ Limit active QP count to bound NIC state and prevent CPU overload

➢ Allocate fewer QPs to dormant clients and more to active clients

Clients categorized as active or dormant based on their utilization metrics
➢Credit renewal: credits for future requests

➢Coalescing degree: indicates the number of requests coalesced within a message. Higher 
values imply QP contention



Receiver-side QP Scheduling

➢ Limit active QP count to bound NIC state and prevent CPU overload

➢ Allocate fewer QPs to dormant clients and more to active clients

Clients categorized as active or dormant based on their utilization metrics
➢Credit renewal: credits for future requests

➢Coalescing degree: indicates the number of requests coalesced within a message. Higher 
values imply QP contention

Clients receive active QPs in proportion to their utilization



Evaluation Questions

• FLOCK vs state-of-the-art RDMA RPC systems

• Scalability with symbiotic scheduling

• Impact on a real-world application



Evaluation Environment

• 24 machines from CloudLab d6515 cluster
• 32-core AMD 7452 2.5 GHz CPU

• Mellanox ConnectX-5 100 Gbps NIC

• 100 Gbps switch connecting the machines

• Maximum active QP count at the server is 256



FLOCK vs eRPC
Configuration : 1 server, 23 clients

Workload : 64B request and 64B response
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Scalability with Symbiotic Scheduling
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Distributed Transaction Processing

Configuration

➢ comparison against FaSST, an RDMA-based transaction processing system

➢ Transaction protocol like FaSST : OCC[1] and 2-phase commit to provide serializable transactions

➢ 3 servers and 20 clients 

Workloads

➢ TATP (read-intensive)

➢ Smallbank (write-intensive)

[1] Optimistic Concurrency Control



FLOCK vs FaSST for TATP
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Other evaluations

➢ Performance under increasing node counts

➢ Impact of coalescing on network and CPU utilization

➢ Head-of-line blocking mitigation using symbiotic scheduling

➢ Comparison with eRPC using in-memory index structure (HydraList)



Conclusion

FLOCK

➢ targets balancing the performance-scalability tradeoff in vanilla RDMA hardware

➢ offers low overhead QP sharing using leader-follower synchronization 

➢ a cooperative scheduling mechanism between client and server to limit the
maximum load at the server

➢ superior performance with efficient network utilization and reduced CPU usage

Thank you!


