
Birds of a Feather Flock Together:
Scaling RDMA RPCs with Flock

Sumit Kumar Monga, Sanidhya Kashyap, Changwoo Min

Datacenters adopting RDMA

To achieve good performance, datacenter applications require the network to
deliver

➢ high throughput

➢ low latency

[1] https://www.datacenterknowledge.com/archives/2015/06/17/rdma-replaces-tcpip-in-linbits-data-replication-tool

[2] https://www.nextplatform.com/2018/03/27/in-modern-datacenters-the-latency-tail-wags-the-network-dog/

Within datacenters RDMA deployment
✓ high throughput and low latency
✓ drop in RDMA hardware prices

https://www.datacenterknowledge.com/archives/2015/06/17/rdma-replaces-tcpip-in-linbits-data-replication-tool
https://www.nextplatform.com/2018/03/27/in-modern-datacenters-the-latency-tail-wags-the-network-dog/

Remote direct memory access (RDMA)

➢ enables direct access to memory of a remote machine

➢ low latency (1 µs)

➢ kernel bypass + CPU bypass

user buffer NIC NIC user buffer

Node 1 Node 2

DMA DMA
(1) (2) (3)

RDMA background

Transport Types
➢ Reliable Connection (RC)

➢ Unreliable Connection (UC)

➢ Unreliable Datagram (UD)

Queue Pair : hosts establish queue pairs (QP) to communicate with each other

RDMA background

Transport Types
➢ Reliable Connection (RC)

➢ Unreliable Connection (UC)

➢ Unreliable Datagram (UD)

Queue Pair : hosts establish queue pairs (QP) to communicate with each other

QP-1

QP-2

QP-3

QP

QP

QP

QP

QP

QP

QP

Server ServerClient 1

Connected transport (RC, UC) Datagram transport (UD)

Client 2

Client 3

Client 1

Client 2

Client 3

RDMA background

Transport Types
➢ Reliable Connection (RC)

➢ Unreliable Connection (UC)

➢ Unreliable Datagram (UD)

Queue Pair : hosts establish queue pairs (QP) to communicate with each other

QP-1

QP-2

QP-3

QP

QP

QP

QP

QP

QP

QP

Server ServerClient 1

Connected transport (RC, UC) Datagram transport (UD)

Client 2

Client 3

Client 1

Client 2

Client 3

➢ RDMA NIC caches QP state in its memory, so
|connected transport| > |datagram transport|

➢ NIC faces cache thrashing as state increases

RDMA background

Transport Types
➢ Reliable Connection (RC)

➢ Unreliable Connection (UC)

➢ Unreliable Datagram (UD)

Queue Pair : hosts establish queue pairs (QP) to communicate with each other

QP-1

QP-2

QP-3

QP

QP

QP

QP

QP

QP

QP

Server ServerClient 1

Connected transport (RC, UC) Datagram transport (UD)

Client 2

Client 3

Client 1

Client 2

Client 3

RDMA primitives
➢ memory (one-sided) ops (read, write, atomics)
➢ messaging ops (send/recv)

RDMA background

Transport Types
➢ Reliable Connection (RC)

➢ Unreliable Connection (UC)

➢ Unreliable Datagram (UD)

Queue Pair : hosts establish queue pairs (QP) to communicate with each other

QP-1

QP-2

QP-3

QP

QP

QP

QP

QP

QP

QP

Server ServerClient 1

RC supports all RDMA primitives UD supports only send/recv

Connected transport (RC, UC) Datagram transport (UD)

Client 2

Client 3

Client 1

Client 2

Client 3

RDMA primitives
➢ memory (one-sided) ops (read, write, atomics)
➢ messaging ops (send/recv)

Large cluster RDMA scalability challenges

➢ Non-scalable RC
➢+ Provides one-sided ops

➢ - Limited on-chip memory on the RDMA NIC

➢ Limited UD functionality:
➢+ Enables one-to-many communication

➢ - Lacks CPU-efficient one-sided ops

Which RDMA transport to use for scalable communication ?

Large cluster RDMA scalability challenges

➢ Non-scalable RC
➢+ Provides one-sided ops

➢ - Limited on-chip memory on the RDMA NIC

➢ Limited UD functionality:
➢+ Enables one-to-many communication

➢ - Lacks CPU-efficient one-sided ops

Which RDMA transport to use for scalable communication ?Only RC Only UD Hybrid

FaRM [NSDI 14, SOSP 15]
Storm [SYSTOR 19]

ScaleRPC [EuroSys 19]

FaSST [OSDI 16]
eRPC [NSDI 19]

HERD [SIGCOMM 14] (UC + UD)
DrTM+H [OSDI 18] (RC + UD)

Scalability comparison of RC vs UD

Benchmark setup: 1 server with increasing clients

Each client issues
➢ a 16B one-sided read from server memory (RC)
➢ a 16B RPC with server (UD)

* each machine has a Mellanox ConnectX-5 100 Gbps NIC

Scalability comparison of RC vs UD

Benchmark setup: 1 server with increasing clients

Each client issues
➢ a 16B one-sided read from server memory (RC)
➢ a 16B RPC with server (UD)

* each machine has a Mellanox ConnectX-5 100 Gbps NIC

0

5

10

15

20

25

30

35

40

22 44 88 176 352 704 1408 2816

Th
ro

u
gh

p
u

t
(M

o
p

s/
se

c)

clients

UD RC ❑ NIC's cache thrashing after 700 clients
❑ UD:

❑ Lower throughput and saturates
earlier than RC

❑ Server CPU cycles are used

Connection scalability with RDMA full flexibility?

Goals:

➢ Maintain connection scalability

➢ Expose all RDMA features, i.e., versatility

➢Minimal software-induced overheads

Connection scalability with RDMA full flexibility?

Goals:

➢ Maintain connection scalability

➢ Expose all RDMA features, i.e., versatility

➢Minimal software-induced overheads

FLOCK: An RDMA communication library

FLOCK

➢ Uses RC
+ Exposes all RDMA capabilities

➢ Uses QP sharing among threads[1,2]

+ Uses FLOCK synchronization for connection scalability

➢ Introduces symbiotic send-recv scheduling
+ A cooperative scheduling policy between sender and receiver

+ Enables efficient network resource allocation and utilization at the end-hosts

[1] FaRM : Fast remote memory, NSDI 2014

[2] No compromises : distributed transactions with consistency, availability, and performance, SOSP 2015

FLOCK Architecture

RPC
Region

RPC
Region

Sender (Client) Receiver (Server)

Thread
Scheduler

QP
Scheduler

App
Threads

RPC
Workers

Connection Handle

Active QP
Inactive QP

FLOCK Architecture

RPC
Region

RPC
Region

Sender (Client) Receiver (Server)

Thread
Scheduler

QP
Scheduler

App
Threads

RPC
Workers

Connection Handle

(1) submit request

Active QP
Inactive QP

FLOCK Architecture

RPC
Region

RPC
Region

Sender (Client) Receiver (Server)

Thread
Scheduler

QP
Scheduler

App
Threads

RPC
Workers

Connection Handle

(1) submit request

(1) client asks for credit while
sending request to server

Active QP
Inactive QP

FLOCK Architecture

RPC
Region

RPC
Region

Sender (Client) Receiver (Server)

Thread
Scheduler

QP
Scheduler

App
Threads

RPC
Workers

Connection Handle

(1) submit request

(1) client asks for credit while
sending request to server

(2)
(2) all requests are
processed

Active QP
Inactive QP

FLOCK Architecture

RPC
Region

RPC
Region

Sender (Client) Receiver (Server)

Thread
Scheduler

QP
Scheduler

App
Threads

RPC
Workers

Connection Handle

(1) submit request

(1) client asks for credit while
sending request to server

(2)
(2) all requests are
processed

(3)

(3) QP scheduler decides
whether to keep this QP active

Active QP
Inactive QP

FLOCK Architecture

RPC
Region

RPC
Region

Sender (Client) Receiver (Server)

Thread
Scheduler

QP
Scheduler

App
Threads

RPC
Workers

Connection Handle

(1) submit request

(1) client asks for credit while
sending request to server

(2)
(2) all requests are
processed

(3)

(3) QP scheduler decides
whether to keep this QP active

(4) return response

Active QP
Inactive QP

FLOCK Architecture

RPC
Region

RPC
Region

Sender (Client) Receiver (Server)

Thread
Scheduler

QP
Scheduler

App
Threads

RPC
Workers

Connection Handle

(1) submit request

(1) client asks for credit while
sending request to server

(2)
(2) all requests are
processed

(3)

(3) QP scheduler decides
whether to keep this QP active

(4) return response

(4) server provides credits or deactivates
the QP along with the response to client

Active QP
Inactive QP

FLOCK Architecture

RPC
Region

RPC
Region

Sender (Client) Receiver (Server)

Thread
Scheduler

QP
Scheduler

App
Threads

RPC
Workers

Connection Handle

(1) submit request

(1) client asks for credit while
sending request to server

(2)
(2) all requests are
processed

(3)

(3) QP scheduler decides
whether to keep this QP active

(4) return response

(4) server provides credits or deactivates
the QP along with the response to client

Active QP
Inactive QP

FLOCK Architecture

RPC
Region

RPC
Region

Sender (Client) Receiver (Server)

Thread
Scheduler

QP
Scheduler

App
Threads

RPC
Workers

Connection Handle

(1) submit request

(1) client asks for credit while
sending request to server

(2)
(2) all requests are
processed

(3)

(3) QP scheduler decides
whether to keep this QP active

(4) return response

(4) server provides credits or deactivates
the QP along with the response to client

(5)

(5) app threads receive response

Active QP
Inactive QP

FLOCK Architecture

RPC
Region

RPC
Region

Sender (Client) Receiver (Server)

Thread
Scheduler

QP
Scheduler

App
Threads

RPC
Workers

Connection Handle

(1) submit request

(1) client asks for credit while
sending request to server

(2)
(2) all requests are
processed

(3)

(3) QP scheduler decides
whether to keep this QP active

(4) return response

(4) server provides credits or deactivates
the QP along with the response to client

(5)

(6)

(5) app threads receive response

(6) Thread scheduler migrates
threads from a deactivated QP
to another active QP

Active QP
Inactive QP

(6)

FLOCK Architecture

RPC
Region

RPC
Region

Sender (Client) Receiver (Server)

Thread
Scheduler

QP
Scheduler

App
Threads

RPC
Workers

Connection Handle

(1) submit request

(1) client asks for credit while
sending request to server

(2)
(2) all requests are
processed

(3)

(3) QP scheduler decides
whether to keep this QP active

(4) return response

(4) server provides credits or deactivates
the QP along with the response to client

(5)

(6)

(5) app threads receive response

(6) Thread scheduler migrates
threads from a deactivated QP
to another active QP

Active QP
Inactive QP

(6)

➢ Receiver-side QP Scheduler dynamically activates/deactivates
QPs on a per-sender basis to avoid NIC cache pressure

➢ Sender-side Thread scheduler multiplexes active QPs among
application threads

But isn’t QP sharing bad for performance

QP sharing among threads is detrimental to performance[1,2]

➢ Low parallelism

➢ High synchronization overheads

FLOCK synchronization overcomes these challenges

➢ Threads sharing a QP progress concurrently with minimal synchronization

➢ Coalesces smaller messages utilizing network bandwidth + CPU efficiently

[1] FaRM : Fast remote memory, NSDI 2014

[2] FaSST : Fast, Scalable and Simple Distributed Transactions with Two-Sided RDMA Datagram RPCs, OSDI 2016

Flock Tail = null

FLOCK Synchronization

Sender (Client)

Receiver (Server)

Thread Combining Queue (TCQ)

Header Meta1 Data1 … MetaN DataN Canary

Header Meta1 Data1 … MetaN DataN Canary

A coalesced
message

RDMA Write

Flock Tail = null

Request Buffer

Flock Tail = null

FLOCK Synchronization

Sender (Client)

Receiver (Server)

Thread Combining Queue (TCQ)

Header Meta1 Data1 … MetaN DataN Canary

Header Meta1 Data1 … MetaN DataN Canary

RDMA Write

Flock Tail = null

➢ QP sharing using leader-follower coordination
➢ leader coalesces requests from followers

Request Buffer

FLOCK Synchronization

Sender (Client)

Receiver (Server)

Thread Combining Queue (TCQ)

Thread 1

Header Meta1 Data1 … MetaN DataN Canary

Header Meta1 Data1 … MetaN DataN Canary

RDMA Write

Enqueue into the TCQ via atomic swap on Flock
Tail, head of TCQ becomes the leader which
manages the request buffer

Flock Tail = null

➢ QP sharing using leader-follower coordination
➢ leader coalesces requests from followers

Request Buffer

FLOCK Synchronization

Sender (Client)

Receiver (Server)

Thread Combining Queue (TCQ)

Thread 1

Header Meta1 Data1 … MetaN DataN Canary

Header Meta1 Data1 … MetaN DataN Canary

RDMA Write

Leader

Enqueue into the TCQ via atomic swap on Flock
Tail, head of TCQ becomes the leader which
manages the request buffer

Flock Tail

➢ QP sharing using leader-follower coordination
➢ leader coalesces requests from followers

Request Buffer

FLOCK Synchronization

Sender (Client)

Receiver (Server)

Thread Combining Queue (TCQ)

Thread 1

Header Meta1 Data1 … MetaN DataN Canary

Header Meta1 Data1 … MetaN DataN Canary

RDMA Write

Thread 2
Leader Follower

Flock Tail

➢ QP sharing using leader-follower coordination
➢ leader coalesces requests from followers

Request Buffer

FLOCK Synchronization

Sender (Client)

Receiver (Server)

Thread Combining Queue (TCQ)

Thread 1

Header Meta1 Data1 … MetaN DataN Canary

Header Meta1 Data1 … MetaN DataN Canary

RDMA Write

Thread 2
Leader Follower

Follower requests memory
buffers from leader

Flock Tail

➢ QP sharing using leader-follower coordination
➢ leader coalesces requests from followers

Request Buffer

FLOCK Synchronization

Sender (Client)

Receiver (Server)

Thread Combining Queue (TCQ)

Thread 1

Header Meta1 Data1 … MetaN DataN Canary

Header Meta1 Data1 … MetaN DataN Canary

RDMA Write

Thread 2
Leader Follower

Leader provides memory buffers to
threads in the TCQ, reserving
memory for the coalesced message

Header Canary

Flock Tail

➢ QP sharing using leader-follower coordination
➢ leader coalesces requests from followers

Request Buffer

FLOCK Synchronization

Sender (Client)

Receiver (Server)

Thread Combining Queue (TCQ)

Thread 1

Header Meta1 Data1 … MetaN DataN Canary

Header Meta1 Data1 … MetaN DataN Canary

RDMA Write

Thread 2
Leader Follower

Meta1 Data1 Meta2 Data2
Header Canary

Flock Tail

All threads copy their payload within
the provided buffer

➢ QP sharing using leader-follower coordination
➢ leader coalesces requests from followers

Request Buffer

FLOCK Synchronization

Sender (Client)

Receiver (Server)

Thread Combining Queue (TCQ)

Thread 1

Header Meta1 Data1 … MetaN DataN Canary

Header Meta1 Data1 … MetaN DataN Canary

RDMA Write

Thread 2
Leader Follower

Meta1 Data1 Meta2 Data2

Leader sets up header & canary to get
the coalesced message ready

Header Canary

Flock Tail

➢ QP sharing using leader-follower coordination
➢ leader coalesces requests from followers

Request Buffer

FLOCK Synchronization

Sender (Client)

Receiver (Server)

Thread Combining Queue (TCQ)

Thread 1

Header Meta1 Data1 … MetaN DataN Canary

Header Meta1 Data1 … MetaN DataN Canary

RDMA Write

Thread 2
Leader Follower

Meta1 Data1 Meta2 Data2

Leader sets up header & canary to get
the coalesced message ready

Header Canary

Flock Tail

➢ QP sharing using leader-follower coordination
➢ leader coalesces requests from followers

Request Buffer

Leader issues RDMA write

FLOCK Synchronization

Sender (Client)

Receiver (Server)

Thread Combining Queue (TCQ)

Thread 1

Header Meta1 Data1 … MetaN DataN Canary

Header Meta1 Data1 … MetaN DataN Canary

RDMA Write

Thread 2
Leader Follower

Meta1 Data1 Meta2 Data2

Leader sets up header & canary to get
the coalesced message ready

Header Canary

Flock Tail

➢ QP sharing using leader-follower coordination
➢ leader coalesces requests from followers

Request Buffer

Leader issues RDMA write

FLOCK synchronization enables
➢ low synchronization overheads for QP sharing
➢ concurrent progress of threads and fairness in terms of

their arrival order
➢ efficient network utilization reducing small messages

sent due to coalescing
➢ fewer CPU cycles for MMIO operations due to

reduction in messages exchanged

Performance-Scalability Tradeoff

RDMA networks face a tradeoff between performance and scalability

FLOCK aims to resolve this tradeoff using symbiotic send-recv scheduling

Configuration Performance Scalability

Threads using dedicated QPs
✓

More parallelism within RDMA NIC

Limited NIC cache

Threads sharing QP

Hampers performance due to
synchronization overheads

✓

Fewer NIC cache misses

Receiver-side QP Scheduling

➢ Limit active QP count to bound NIC state and prevent CPU overload

➢ Allocate fewer QPs to dormant clients and more to active clients

Clients categorized as active or dormant based on their utilization metrics
➢Credit renewal: credits for future requests

➢Coalescing degree: indicates the number of requests coalesced within a message. Higher
values imply QP contention

Receiver-side QP Scheduling

➢ Limit active QP count to bound NIC state and prevent CPU overload

➢ Allocate fewer QPs to dormant clients and more to active clients

Clients categorized as active or dormant based on their utilization metrics
➢Credit renewal: credits for future requests

➢Coalescing degree: indicates the number of requests coalesced within a message. Higher
values imply QP contention

Clients receive active QPs in proportion to their utilization

Evaluation Questions

• FLOCK vs state-of-the-art RDMA RPC systems

• Scalability with symbiotic scheduling

• Impact on a real-world application

Evaluation Environment

• 24 machines from CloudLab d6515 cluster
• 32-core AMD 7452 2.5 GHz CPU

• Mellanox ConnectX-5 100 Gbps NIC

• 100 Gbps switch connecting the machines

• Maximum active QP count at the server is 256

FLOCK vs eRPC
Configuration : 1 server, 23 clients

Workload : 64B request and 64B response

FLOCK vs eRPC
Configuration : 1 server, 23 clients

Workload : 64B request and 64B response

0

10

20

30

40

50

1 2 4 8 16 32 48

Th
ro

u
gh

p
u

t
(o

p
s/

u
se

c)

eRPC FLOCK

3.4X

❑ FLOCK throughput up to 3.4X against eRPC
❑ Tail latency lower by up to a factor of 2

+ Coalescing enables more concurrency at the
clients & scheduling limits active QP count
- UD-based RPCs have higher CPU overheads

0

20

40

60

80

100

1 2 4 8 16 32 48

9
9

%
 L

at
en

cy
 (

u
s)

application threads per client

2.1X

Scalability with Symbiotic Scheduling

0

10

20

30

40

50

60

70

16 32 48

Th
ro

u
gh

p
u

t
(M

ill
io

n
 o

p
s/

se
c)

application threads per client

Native RC (No sharing) Lock-based QP sharing (2 threads/QP) FLOCK

❑ Similar performance up to 16 threads
❑ FLOCK outperforms others by up to

133% at higher thread counts
❑ Sharing using spinlock serializes threads

working on the same QP
❑ Coalescing in FLOCK enables concurrent

request submission by threads sharing
a QP, reducing messages transferred by
client as well as server

2.3X

Distributed Transaction Processing

Configuration

➢ comparison against FaSST, an RDMA-based transaction processing system

➢ Transaction protocol like FaSST : OCC[1] and 2-phase commit to provide serializable transactions

➢ 3 servers and 20 clients

Workloads

➢ TATP (read-intensive)

➢ Smallbank (write-intensive)

[1] Optimistic Concurrency Control

FLOCK vs FaSST for TATP

0

10

20

30

40

50

1 2 4 8 16 32

Th
ro

u
gh

p
u

t
(M

ill
io

n
 t

xn
/s

ec
)

FaSST FLOCK

❑ FaSST performs better up to 2 threads, but
its performance saturates at 4 threads

❑ Throughput in FLOCK up to 2.4X FaSST with
lower median and tail latency

❑ FLOCK’s performance improves with higher
thread counts due to better coalescing and
efficient network utilization

2.4X

* FaSST suffers packet loss at 32 threads0

250

500

750

1000

1250

1500

1 2 4 8 16 32

9
9

%
 la

te
n

cy
 (

u
s)

application threads per client

3.4X

Other evaluations

➢ Performance under increasing node counts

➢ Impact of coalescing on network and CPU utilization

➢ Head-of-line blocking mitigation using symbiotic scheduling

➢ Comparison with eRPC using in-memory index structure (HydraList)

Conclusion

FLOCK

➢ targets balancing the performance-scalability tradeoff in vanilla RDMA hardware

➢ offers low overhead QP sharing using leader-follower synchronization

➢ a cooperative scheduling mechanism between client and server to limit the
maximum load at the server

➢ superior performance with efficient network utilization and reduced CPU usage

Thank you!

