
B. Murgante et al. (Eds.): ICCSA 2012, Part III, LNCS 7335, pp. 238–247, 2012.
© Springer-Verlag Berlin Heidelberg 2012

EIMOS: Enhancing Interactivity
in Mobile Operating Systems

Sunwook Bae1, Hokwon Song1, Changwoo Min1, Jeehong Kim2,
and Young Ik Eom2

1 Samsung Electronics Co., Ltd., Suwon, Korea
1,2 School of Information and Communication Engineering

Sungkyunkwan University, Suwon, Korea
{swbae98,hokwon,multics69,jjilong,yieom}@ece.skku.ac.kr

Abstract. Interactivity is one of the most important factors in the computing
systems. There has been a lot of research to improve the interactivity in
traditional desktop environments. However, few research studies have been
done for interactivity enhancement in mobile systems like smart phones and
tablet PCs. Therefore, different approaches are required to improve the
interactivity of these systems. Even if multiple processes are running in a
mobile system, there is only one topmost process which interacts with the user
due to the resource constraints like small screen sizes and limited input
methods. In this paper, we propose EIMOS, a system which identifies the
topmost process and enhances the interactivity. Our system improves the CPU
process scheduler and I/O prefetcher in the mobile operating system. We also
implement EIMOS in the Android mobile platform and performed several
experiments. The experimental results show that the performance is increased
up to 16% compared to that of the existing platform.

Keywords: Interactivity, Topmost process, Mobile system, Operating system.

1 Introduction

The computing hardware technology has been rapidly developed, but the issue of
interactivity still remains due to multitasking and software bloat. Many processes execute
concurrently in the system; some interact with users in the foreground, and the others run
just in the background. These processes need sufficient system resources like CPU,
memory, and I/O to run smoothly. The traditional operating systems allocate those
resources to the processes that are more important to the user first, e.g., interactive
processes. In the mobile systems, multitasking is also supported, but the performance of
them is lower than desktop systems due to the limited system resources. Therefore it is
more important to improve the interactivity in the mobile devices.

There has been lots of research to improve the interactivity in the operating systems of
desktop environments [3, 6, 8, 9, 10, 11, 12]. However, few research studies exist for that
issue in the mobile systems. In desktop environments, it is possible for the user to work
with multiple foreground processes on a single screen. For example, it is feasible to run a

 EIMOS: Enhancing Interactivity in Mobile Operating Systems 239

translator or a calculator while working on a word processing program. In mobile
systems, the multitasking feature is also supported but they use different methods to
interact with users due to small screen sizes and touch-based input methods. With those
restrictions, only one topmost process is used to interact with the user in most cases
despite of supporting the multitasking feature [1]. The interactivity experienced by
mobile system users depends on the topmost process as in Fig. 1.

In this paper, we present EIMOS, a system to improve the interactivity by

considering the mobile system characteristics. EIMOS identifies the topmost process
and favors it to enhance interactivity of the system. It improves the process scheduler
and prefetching mechanism of the I/O data. EIMOS also has a small runtime overhead
and small amount of modifications to the existing operating systems. Specific
contributions are as follows:

• Identify the interactive process with a small runtime overhead
• Adaptively apply the process scheduling and I/O prefetching for interactivity
• As far as we have known, this is the first research to improve the interactivity

of the mobile operating systems.

The rest of the paper is organized as follows: we review related work in Section 2 and
describe the key ideas of the paper and the implementation details in Section 3. Section 4
gives experimental evaluation, and we present conclusion and future work in Section 5.

2 Related Work

This section describes representative related work. We start by reviewing the Linux
kernel scheduler. Moreover, we review typical research activities that are proposed to
improve the interactivity on the desktop environments.

2.1 Process Scheduler in the Linux Systems

In the Linux kernel, the O(1) scheduler was introduced in the early version 2.6 by
Ingo Molnar [2, 3]. The scheduler improved the interactivity of the interactive
processes in two ways. The first was to give a dynamic priority [2] to the interactive

Fig. 1. Topmost process in mobile system

240 S. Bae et al.

processes by analyzing the average sleep time of the processes. The second was to let
the interactive processes remain in the active queue [2] even if the time slice expired.
It therefore removed the delay by other processes. From the Linux kernel 2.6.23,
Completely Fair Scheduler (CFS) [4, 5] scheduler has replaced by the old O(1)
scheduler. The design goal of the CFS scheduler is to provide fair CPU resource
allocation for executing processes. However, it also optimized the interactivity by
adjusting the virtual runtime value of the processes that slept for a period of time [6].

Lo et al. [7] proposed Modified Interactive Oriented Scheduler (MIOS), a
scheduler that improves the interactivity by eliminating unnecessary overhead from
the Linux scheduler. MIOS achieved the improvement by removing the overhead
caused by maintaining two queues, active and expired, in the O(1) scheduler.

Above three studies used the limited information, such as the average sleep time, to
identify the interactive processes. Because of the lack of information, they cannot
detect the right interactive processes even if they improved the performance and the
scalability of the scheduler.

2.2 Research in the Desktop Environment

2.2.1 Identification of the Interactive Processes
Etsion et al. [8, 9] suggested that multimedia processes should be treated in a special
way as well as interactive processes. They defined these as Human Centered (HuC)
processes which are detected based on the display output production. They also
showed that the performance of the HuC processes was not degraded even if heavy
background processes were running. However, the approach is not suitable in the
mobile system because there are still many interactive processes which are not related
to multimedia jobs, such as messenger and calendar applications.

Zheng and Nieh [10] presented RSIO, an approach improving the response time of
interactive latency-sensitive processes. RSIO identified the interactive processes
dynamically by monitoring the I/O channels usage for user interactions and then boosted
the priority of interactive processes when they handled latency-sensitive activities. The
problem of this approach is that some I/O channels, which are suggested in RSIO such as
tty and mouse devices, cannot be applied to the mobile system and it is not enough to
improve the interactivity by adjusting priorities in the processor scheduler.

2.2.2 OS Support for Improving the Interactivity
The previous research was focused on identifying the interactive processes and
prioritizing them in the process scheduler to improve the interactivity. Yan [11],
however, presented a holistic approach addressing process scheduling, memory
management, and I/O scheduling. He proposed a new process scheduling policy, LRU
memory management system, and disk I/O scheduling policy. He showed the
improvement of computer responsiveness by modifying on the existing Linux/X
desktop system.

Yang proposed Redline [12], a system designed to support interactive and resource-
intensive modern applications in commodity operating systems. It maximized the

 EIMOS: Enhancing Interactivity in Mobile Operating Systems 241

responsiveness of interactive applications by orchestrating memory and disk I/O
management with the CPU scheduler.

Above two studies focused on the desktop environment and modified the operating
systems entirely. The suggested policies of memory management and disk I/O
scheduling also have a large runtime overhead. Therefore, it is hard to apply them in
the mobile operating systems.

3 Design and Implementation of Eimos

In this section, we introduce a design and implementation of EIMOS in detail.
EIMOS is a system that improves the interactivity in the mobile systems. EIMOS
consists of two steps. The first step is to identify the topmost process which is an
important process for interactivity. The second step is to improve the interactivity by
allocating the CPU/IO resources to the topmost process first.

3.1 Identification of the Topmost Process

The method to identify the topmost process depends on the mobile operating systems.
It is also impossible to detect the process in the OS kernel layer alone because the
information can be managed by the UI or windows framework. In case of the Android
mobile platform, we can use a low memory killer module which was newly added to
the Linux kernel to address the out-of-memory problem [13]. The main role of the
low memory killer module is to kill the less important processes depending on the
information of Table I. The oomkilladj variable in the task_struct structure
which handles the process information is used to classify the processes and the
variable is updated from the ActivityManager which is a component to handle the UI
information in the Android mobile platform. According to the oomkilladj
variable, the process groups are divided into seven. The low memory killer module
finds the less important processes from the groups of high oomkilladj values, such
as EMPTY_APP and HIDDEN_APP. EIMOS, however, identifies the topmost process
by using the information of the FOREGROUND_APP group. This approach is simple
and has less runtime overhead comparing with previous studies.

Table 1. oomkilladj values for the classes of processes

Group Oomkilladj

SYSTEM -16

FOREGROUND_APP 0

VISIBLE_APP 1

SECONDARY_SERVER 2

HIDDEN_APP 7

CONTENT_PROVIDER 14

EMPTY_APP 15

242 S. Bae et al.

3.2 Scheduler Support

There can be many methods to improve the interactivity of the topmost process. We
first present to allocate the CPU resource to the topmost process by giving an
additional bonus to the process in the OS scheduler. Fig. 2 shows the workflow of the
scheduler support in EIMOS. First, we add a topmost flag to all task_struct
structures and initialize it to a value of false on device booting time. Second, we
identify the topmost process by monitoring the low memory killer module and set the
topmost flag of the process to a value of true. Third, we adjust the priority of the
topmost process in the OS scheduler. Finally, if the topmost process is changed, we
modify the topmost flag and the priority of the previous process to an old value. The
Linux O(1) scheduler and CFS scheduler are the priority-based scheduler and the
processes with higher priorities get better response time. We give a dynamic priority
bonus of 19 to the topmost process in EIMOS. This approach has a little impact on
other processes and the interactivity of the topmost process does not significantly
decrease in situation of running lots of background processes.

3.3 I/O Prefetch Support

The I/O performance is always a bottleneck of the computer systems. Recently, there
are many applications to handle big data like music videos and movies. In these cases,
the I/O prefetch technique which loads the I/O data to memory in advance is very
effective due to hiding the I/O latency. We therefore propose the interactivity aware
adaptive prefetch scheme here. The previous prefetch scheme in the Linux kernel
used the information based on the sequentiality, but we consider the interactivity
additionally. We implement the read-ahead policy to read more adjacent pages of data
when the topmost process requests the system to read the I/O data. Fig. 3 shows the
workflow of the I/O prefetch support in EIMOS. In the Linux kernel, the maximum
size of the read-ahead buffer is fixed but we also extend it eight times in case of the
topmost process. This approach can improve the I/O performance of the topmost
process with a little modification.

Fig. 2. Workflow of process scheduler support in EIMOS

 EIMOS: Enhancing Interactivity in Mobile Operating Systems 243

Fig. 3. Workflow of I/O prefetch support in EIMOS

4 Evaluation

The hardware environment for the experiments is shown in Table II. We implemented
EIMOS by modifying the Linux kernel sources in the Android 2.2 froyo emulator. We
developed two micro benchmarks and used one more realistic workload for
evaluation: CPU and IO bound micro-benchmarks and a Linpack benchmark [14]
which is a measure of a system’s floating point computing power. Linpack has been
used for years on all types of computers and it shows the performance of the topmost
process. We can evaluate the improvement of the interactivity by using these
benchmarks and by comparing between EIMOS and original Android emulator.

Table 2. Experiment environment

We first made a simple micro-benchmark for measuring the CPU performance of

EIMOS. Fig. 4 shows the source code of the benchmark. We ran this micro-
benchmark 50 times and measured the average time of them as in Fig. 5. The first
graph shows the result by running this micro-benchmark alone and the second graph
is the result by running the micro-benchmark with 10 stresses of the same benchmark
application running on the background. Without any background loads, the
performance of EIMOS improves by 4%. As the load on the system increases, the
performance of EIMOS improves by 16%.

For (i=0; i<1000000; i++)
 value += i;
 For (j=0; j<1000000; j++)
 value += j;

Fig. 4. Source code of CPU bound micro-benchmark

CPU Intel(R) Core(TM) i5 CPU 2.40 GHz

Memory 4 GB RAM

OS Ubuntu 10.10 (Linux)

244 S. Bae et al.

Fig. 6 shows the code of our micro-benchmark for measuring I/O performance.
The benchmark reads 48 bytes data sequentially from the file of total 30MB size and
finishes when it reaches the end of the file. We ran the micro-benchmark by changing
the maximum size of the read-ahead buffer by 8 times and 16 times additionally.
Fig. 7 shows the result of the average time of 10 trials. We can see that the I/O
performance improved by 5% and 7% respectively. Although this I/O operation
performs the sequential read requests, there was not much improvement from the
experiments than we expected. We should consider the page cache of the
Linux kernel for I/O operation. Fig.8 shows the result of taking time to read a same
file of 30MB size repeatedly. We can see little improvement after first trial
because the page cache contains the previous I/O data. Therefore, we have a
future research plan to improve the I/O performance in EIMOS considering the page
cache.

Fig. 5. Average time of CPU bound micro-benchmark

byte[] buffer = new byte[48];
FileInputStream fis
 = openFileInput("test.data");

BufferedInputStream buf
= new BufferedInputStream(fis);

while (true) {
 num = buf.read(buffer);
 if (num < 0)
 break;

}

Fig. 6. Source code of I/O bound micro-benhmark

 EIMOS: Enhancing Interactivity in Mobile Operating Systems 245

Fig. 7. Average time of I/O bound micro-benhmark

Fig. 8. Time to read same data repeatedly

Fig. 9 shows the result by running the Linpack 1.2.8 benchmark with and without
background stresses. EIMOS also improves the performance maximum 18 times in the
background stresses of the 10 micro-benchmark. In computing systems, if the background
workloads increase, the performance of the topmost process should be degraded. However
EIMOS shows the consistent performance in the heavy background stresses because
EIMOS identifies the topmost process and boosts the priority of the process.

Fig. 9. Linpack 1.2.8 benchmark score

246 S. Bae et al.

5 Conclusions and Future Work

This paper presents EIMOS, a new approach to enhance the interactivity on the
mobile operating systems. EIMOS identifies the topmost process which has the
biggest impact on user responsiveness and supports the process by adjusting the CPU
scheduling and using the I/O prefetching technique. We implemented EIMOS in the
Android mobile platform and the experiment results showed that the CPU
performance of the topmost process was improved by 16% and the I/O performance
by 7% in the heavy background stresses.

In future work, we will consider not only memory management, but also I/O
scheduling to improve the interactivity of the topmost process. We are also interested
in other resource management algorithms which are best suited for the mobile
environments.

Acknowledgments. This research was supported by Basic Science Research Program
through the National Research Foundation of Korea(NRF) funded by the Ministry of
Education, Science and Technology(2011-0025971).

References

1. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.:
Diversity in Smartphone Usage. In: Mobile Systems, Applications and Services (MobiSys)
(June 2010)

2. Bovet, D.P., Cesati, M.: Understanding the Linux Kernel, 3rd edn. O’Reilly (2006)
3. Molnar, I., Kolivas, C.: Interactivity in Linux 2.6 Scheduler (2003),

http://www.kerneltrap.org/node/780
4. Molnar, I.: Linux CFS Scheduler (2007), http://kerneltrap.org/node/11737
5. Molnar, I.: A description of CFS design, http://people.redhat.com/mingo/

cfs-scheduler/sched-design-CFS.txt
6. Wong, C.S., Tan, I.K.T., Kumari, R.D., Lam, J.W., Fun, W.: Fairness and Interactive

Performance of O(1) and CFS Linux Kernel Schedulers. In: Information Technology,
ITSim 2008 (2008)

7. Lo, L., Lee, L.T., Chang, H.Y.: A Modified Interactive Oriented Scheduler for GUI-based
Embedded Systems. In: Computer and Information Technology (July 2008)

8. Etsion, Y., Tsafrir, D., Feitelson, D.G.: Desktop scheduling: How Can We Know What the
User Wants? In: Proc. of the 14th International Workshop on Network and Operating
Systems Support for Digital Audio and Video. ACM Press (2004)

9. Etsion, Y., Tsafrir, D., Feitelson, D.G.: Process Prioritization Using Output Production:
Scheduling for Multimedia. ACM Transactions on Multimedia Computing,
Communications and Applications (November 2006)

10. Zheng, H., Nieh, J.: RSIO: Automatic User Interaction Detection and Scheduling. In: Proc.
of the 2010 ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems (June 2010)

 EIMOS: Enhancing Interactivity in Mobile Operating Systems 247

11. Yan, L., Zhong, L., Jha, N.K.: Towards a Responsive, Yet Power-Efficient, Operating
System: A Holistic Approach. In: Proc. of the 13th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (September 2005)

12. Yang, T., Liu, T., Berger, E.D., Kaplan, S.F., Moss, J.E.B.: Redline: First Class Support
for Interactivity in Commodity Operating Systems. In: Proc. of the 8th Symposium on
Operating Systems Design and Implementation (December 2008)

13. Linux/drivers/staging/android/lowmemorykiller.c,
http://lxr.free-electrons.com/source/
drivers/staging/android/lowmemorykiller.c?v=2.6.29

14. Linpack for Android, http://www.greenecomputing.com/apps/linpack

	EIMOS: Enhancing Interactivity in Mobile Operating Systems
	Introduction
	Related Work
	Process Scheduler in the Linux Systems
	Research in the Desktop Environment

	Design and Implementation of Eimos
	Identification of the Topmost Process
	Scheduler Support
	I/O Prefetch Support

	Evaluation
	Conclusions and Future Work
	References

