
Content-Based Chunk Placement Scheme

for Decentralized Deduplication
on Distributed File Systems

Keonwoo Kim1, Jeehong Kim1, Changwoo Min1,2, and Young Ik Eom1

1 College of Information and Communication Engineering, Sungkyunkwan University
Suwon, Korea

{kkw0528,jjilong,multics69,yieom}@skku.edu
2 Samsung Electronics Co., Ltd., Suwon, Korea

multics69@skku.edu

Abstract. The rapid growth of data size causes several problems such
as storage limitation and increment of data management cost. In order
to store and manage massive data, Distributed File System (DFS) is
widely used. Furthermore, in order to reduce the volume of storage, data
deduplication schemes are being extensively studied. The data dedupli-
cation increases the available storage capacity by eliminating duplicated
data. However, deduplication process causes performance overhead such
as disk I/O. In this paper, we propose a content-based chunk placement
scheme to increase deduplication rate on the DFS. To avoid performance
overhead caused by deduplication process, we use lessfs in each chunk
server. With our design, our system performs decentralized deduplica-
tion process in each chunk server. Moreover, we use consistent hashing
for chunk allocation and failure recovery. Our experimental results show
that the proposed system reduces the storage space by 60% than the
system without consistent hashing.

Keywords: Deduplication, Distributed file system, Chunk placement,
Consistent hashing.

1 Introduction

The amount of digital information is rapidly increasing all over the world. Ac-
cording to the forecast by IDC, the amount of digital information will grow by a
factor of 50 over the next decade [1, 2]. Also, most of data in the digital universe
is unstructured one such as image, video, audio, and document files [1]. More-
over, an influx of data is rapidly growing in cloud storage [1]. This rapid growth
of data size causes several problems such as storage limitation, increment of data
management cost, and network traffic congestion [3, 4]. For storing and manag-
ing massive data in cloud storage, cloud storage service provider generally uses
Distributed File System (DFS). However, despite wide adoption of DFS, rapidly
growing data size causes additional storage and management cost. Therefore,
data size optimization techniques are required for cloud storage systems. Among

B. Murgante et al. (Eds.): ICCSA 2013, Part I, LNCS 7971, pp. 173–183, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



174 K. Kim et al.

data size optimization studies [3–5], data deduplication is a representative re-
search issue. Data deduplication eliminates duplicated data, by which available
storage space is increased and additional storage cost is reduced.

Duplicated data reduces available storage space. Most of cloud storage services
use data deduplication to solve lack of available storage space. However, previous
research [6–11] on DFS do not support data deduplcation because of performance
overheads that are caused by additional computation cost and disk I/O. In this
paper, we propose a content-based chunk placement for the data deduplication
on the DFS. In order to distribute deduplication processes, we integrate lessfs
that is an inline deduplication file system with each chunk server of MooseFS.
Thus, we achieve decentralized data deduplication process, while maintaining
high performance. In MooseFS [6], a file is divided into multiple chunks and each
of them is stored in chunk server dispersedly. So, by using consistent hashing, the
chunk placement module gather same chunks in one chunk server, by which we
enhance the deduplication rate. We make following contributions in this paper:

• We introduce a new content-based chunk placement for deduplication sys-
tem on MooseFS. Furthermore, we design a content-based chunk placement
for deduplication system that replaces the file system of chunk server in
MooseFS with lessfs.

• We coordinate consistent hashing with a content-based chunk placement for
deduplication system for enhancing the deduplication rate. By performing
deduplication process in each chunk server, our system can avoid bottleneck
of the master server.

• We evaluate our chunk placement for deduplication system, and show its
effectiveness.

The rest of the paper is organized as follows: We review background in Section
2. Section 3 describes the key ideas and implementation details. In Section 4, we
evaluate our system and show the results. Finally, we conclude in Section 5.

2 Background and Related Work

2.1 DFS

A DFS is file system that allows access to files from multiple hosts via a com-
munication network [12]. With DFS, a client can access remote files in the same
way that it accesses local files. DFS generally consists of single master server
and multiple storage servers. Master server manages file metadata and chunk
server keeps chunk data of files. Typical open-source based DFSs are MooseFS
[6], XtreemFS [7, 8], Ceph [10], Google file system[11], and GlusterFS [9]. We
choose MooseFS as our DFS platform because it is general-purpose and good
performance file system. MooseFS consists of single master server, multiple meta-
data backup servers, and multiple chunk servers. Master server manages whole
file system and stores metadata for each file. Chunk servers store chunk data of
each file. Metadata backup servers store metadata changelogs and periodically
download metadata files from master server [6].



Content-Based Chunk Placement Scheme for Decentralized Deduplication 175

2.2 Data Deduplication in Local File System

A data deduplication technique is used to increase the storage capacity by de-
tecting and eliminating duplicated data. With the scheme, each chunk can have
only a single copy in the system. The data deduplication exists in the following
types: post-process and inline data deduplication. Post-process data deduplica-
tion occurs after data has been written, whereas inline data deduplication occurs
before the data has been written [5]. Therefore, inline deduplication causes more
network traffic than post-process deduplication. On the other hand, post-process
deduplication requires storage space to store the duplicated data before dedu-
plication is performed. Typical open-source based deduplication file systems are
lessfs, zfs, and sdfs [4, 5]. We use lessfs because it is a good performance dedu-
plication file system. Lessfs is an inline block-level deduplication in Linux file
system and uses data compression (e.g., LZO, QuickLZ, Snappy, bzip, and gzip).
Also, block size can be defined as 4, 8, 16, 32, 64, and 128 KB. Through configur-
ing block size, we can adjust tradeoff between throughput and deduplicated size.
To store metadata, lessfs uses low-level FUSE API and database (e.g., Berke-
leyDB, hamsterdb, and Tokyo Cabinet). Also, by using cache, lessfs reduces
disk I/O.

2.3 Related Work

As the data size rapidly increases, the data deduplication is extensively studied
to optimize storage capacity. The data deduplication technique is divided into
two categories [3]: primary data deduplication and secondary data deduplica-
tion. Primary data storage directly interacts with application. In other words,
application directly affects data. Thus, primary data deduplication systems are
latency-aware and use RPC based protocols [13]. On the other hand, secondary
data storage copies and archives data to recover from data loss and corruption.
Secondary data deduplication systems are throughput-aware and use streaming
protocols [13] because this storage processes large amounts of data. Mayer et al.
[14] examined in primary data and secondary data. They found that block-level
deduplication saves just about 10% more space than the whole-file deduplica-
tion. However, experimental result of El-Shimi et al. [15] showed that block-level
deduplication saves from 2.3 times to 15.8 times more storage space than whole-
file deduplcation. This difference of experimental results is due to the difference
of Mayer’s data set and El-Shimi’s data set. HYDRAstor [16] is a secondary data
storage and block-level deduplication system, and uses distributed hash table for
scalability. iDedup [13] is a inline data deduplication for the primary storage,
and uses in-memory indexing and metadata cache. Lillibridge et al. [17] propose
a inline deduplication system and use parse indexing which is in-memory index.
Wei et al. [18] use bloom filter and dual cache. Zhu et al. [19] use summary
vector and locality preserved caching.

Previous research [13–20] regards deduplication process as performance degra-
dation factor because of disk I/O. Therefore, in-memory indexing or cache
is used to reduce deduplication overhead. In-memory indexing such as Bloom



176 K. Kim et al.

filter can reduce disk I/O and quickly searches chunk or block which is a unit of
deduplication. Cache is also used to reduce disk I/O.

However, most of studies [13–17, 19] perform centralized data deduplica-
tion. This causes bottleneck of the central server and increases I/O latency.
For this reason, we use lessfs in each chunk server of MooseFS to decentralize
deduplication.

3 Design and Implementation

3.1 Chunk Placement of Existing MooseFS

When the client of MooseFS executes the write operation, write operation steps
of existing MooseFS are as follows: (1) The client requests a chunk server list
to the master server to store chunks in chunk servers. (2) The master server
returns a chunk server list that consists of information of chunk servers which
have more available space than the other chunk servers. (3) The client sends the
chunk data to chunk servers that correspond with a chunk server list. (4) Chunk
servers receive and store chunk data.

Therefore, chunks are stored on the chunk server that has more available space
than the other servers. This approach is fitted for a system requiring storage load
balancing.

3.2 Deduplication on MooseFS

Master Server Client

Chunk Server

lessfs

Chunks

Chunk Server

lessfs

Chunks

Chunk Server

lessfs

Chunks

Chunk Server

lessfs

Chunks

Chunk Server

lessfs

Chunks

Chunk Placement
module

with Consistent
Hashing

Sending write request

Returning a chunk
server list

Storing chunk data

Executing write operation
from user

Fig. 1. Overall architecture



Content-Based Chunk Placement Scheme for Decentralized Deduplication 177

We propose the deduplication on MooseFS. MooseFS is chunk-based DFS. If
a file size is larger than 64MB, a file is divided up into 64MB chunks. Other-
wise, a chunk size becomes the same as a file size. MooseFS can consist of a
single master server and the multiple chunk servers as Fig. 1 shows. Chunks are
dispersedly stored in chunk servers that are distributed on the network. Chunk
server can use many file systems but ext4 is generally used. To implement the
deduplication on DFS, we use a lessfs that is a block-level and inline deduplica-
tion file system. In chunk server of Fig. 1, we mount lessfs in the chunk server
for the data deduplication. Therefore, all chunks of chunk server are stored in
a mount point of lessfs and the duplicated chunk data are eliminated by lessfs.
The deduplication process is regarded as causing performance overheads such
as the additional computation cost and the disk I/O. If deduplication process
is performed in a master server, those overheads cause bottleneck of a master
server. Therefore, the data deduplication process is performed in each chunk
server so we can avoid the bottleneck to deduplicate in a master server. Also,
the disk I/O can be reduced because lessfs uses cache and in-memory database.

3.3 Consistent Hashing for MooseFS

Consistent Hashing. Consistent hashing [21, 22] is used in a changing popula-
tion of web server environment. If a sever node is added or removed, all objects
of web server nodes have to be relocated. We use consistent hashing to solve
this problem. Each node is mapped on a hash ring and has a hash value range.
Moreover, each data object has hash value and belongs to each node. When data
object is stored, the system finds a node by comparing hash value range of node
with hash value of data object. After the system find a node, the data object is
stored in the found node. By using consistent hashing, we can avoid all object
data relocation. Consistent hashing is used in many distributed system such as
Dynamo [23], Cassandra [24], and Memcached [25].

Consistent Hashing for MooseFS. When communicating with servers,
Moose-FS uses 32-bit CRC that is a hash function to detect error. For iden-
tifying chunk, we utilize 32-bit CRC. In master server, we make a data structure
for the chunk server node in consistent hashing. Each node also has start and
end of 32-bit CRC value, size of range, and next node pointer and consistent
hahsing is implemented as a circular linked list. When chunk server is regis-
tered, new node is created and included in a circular linked list. The range of
consistent hashing is from 0 to 232-1 because CRC is 32-bit. Each chunk server
has 32-bit CRC hash range and each chunk is stored in the corresponding chunk
server. To find the chunk server, the master server compares 32-bit CRC value
of chunk with a hash range of the chunk server. In Fig. 2-(a), consistent hash-
ing include the chunk servers and chunks. Chunk 1 belongs to chunk server A,
chunk 2 belongs to chunk server B, and chunk 3, chunk 4, and chunk 5 belong
to chunk server C. Subsequently, in Fig. 2-(b), if chunk server D is added in
consistent hashing, range of chunk server C is divided into two halves. So, range



178 K. Kim et al.

AA

BB

CC

DD

AA

BB

CC

(a) Before adding chunk server D (b) After adding chunk server D

2
3

11

4

5

2
3

4

5
: Chunk server

: Chunk

Chunk server Hash range Stored chunks

A [0, 230) 1

B [230 , 231) 2

C [231 , 232) 3, 4, 5

Chunk server Hash range Stored chunks

A [0, 230) 1

B [230 , 231) 2

C [231 , 3x230) 3

D [3x230 , 232) 4, 5

: Belong to

Adding chunk server D

Fig. 2. Consistent Hashing for MooseFS

of chunk server C becomes from 231 to 3×230-1 and range of chunk server D be-
comes from 3×230 to 232-1. Therefore, chunk 4 and chunk 5 are relocated from
chunk server C to chunk server D because of changing range of chunk server C.
When the client executes a write operation, the write operation steps of the pro-
posed chunk placement are as follows: (1) The client generates 32-bit CRC value
that corresponds with foremost 4KB of the chunk data. (2) The client sends a
write request message to the master server with 32-bit CRC value. (3) To find
a appropriate chunk server, the master server travels a circular linked list with
comparing 32-bit CRC value with start and end value of each chunk server node.
(4) MooseFS not use replication, the master server stores node information to a
chunk server list. (5) Otherwise, replicas of chunk data are stored other chunk
servers. Therefore, the master server chooses found node of step (4) and its next
nodes. (6) The master server returns a chunk server list to the client. (7) The
client sends chunk data to chunk servers that correspond with a chunk servers
list. (8) Chunk servers receive and store chunk data. For content-based chunk
placement, master server compares 32-bit CRC range of chunk server and 32-bit
CRC value of chunk. However, the larger size data is input to 32-bit CRC, the
more time is spent. Therefore, 32-bit CRC computation of all 64 MB chunks
causes the bottleneck in the master server. If the master server performs 32-
bit CRC computation and comparing with 32-bit CRC values, the performance
of whole system is degraded. Chen et al. [26] propose content-based sampling
which produces 32-bit CRC value that corresponds with the first four bytes of



Content-Based Chunk Placement Scheme for Decentralized Deduplication 179

each page. Moreover, they examined choosing other bytes and found that using
the first four bytes performs well. For this reason, we hash a foremost 4 KB of
a 64 MB chunk.

4 Evaluation

In this section, we evaluate how much our deduplication system reduces the data.
We installed client, master server, and chunk server in one PC and installed
chunk server in 17 PCs. Also, we mount lessfs on all PCs. Therefore, the total
number of chunk servers is 18. We used multimedia data set (about 936 MB)
which includes movie files, audio files, and document files. To identify what
amount of duplicated data is eliminated, we make data set-1, set-2, and set-3
that include same data and have different name.

1.20 1.20
1.30 1.301.29 1.29

0

0.2

0.4

0.6

0.8

1

1.2

1.4

single copy duplicate 1

St
or
ed

Da
ta

GB

128k

64k

32k

Fig. 3. Stored data size according to block size variation

107.39
88.06

109.04
90.90

201.32

125.99

0.00

50.00

100.00

150.00

200.00

250.00

single copy duplicate 1

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

128k

64k

32k

Fig. 4. Execution time according to block size variation

First of all, we experiment to find suitable block size of lessfs. In Fig. 3, single
copy of x-axis means that unique set-1 is stored in MooseFS, duplicate-1 of x-
axis means that both set-1 and set-2 were stored in MooseFS. Y-axis means



180 K. Kim et al.

stored data size on all chunk servers. 128 KB, 64 KB, and 32 KB are block size
of lessfs. Stored data size of 128 KB is smaller than 64 KB and 32 KB block size.

In Fig. 4, execution time of 128 KB is the fastest but execution time of 32
KB is almost twice as execution time of 128 KB and 64 KB in single copy. The
reason of this result is that block size is too small. 32 KB block size takes long
time to execute, because small block size occurs to create more metadata and
many comparision to detect data duplication. Therefore, optimal deduplication
block size is 128 KB, and we experiment our system using 128 KB block size.

0.98

1.96

2.94

1.04

1.93

2.72

1.09 1.10 1.10

0

0.5

1

1.5

2

2.5

3

3.5

single copy duplicate 1 duplicate 2

St
or
ed

Da
ta

GB

MooseFS

MooseFS+lessfs

MooseFS+conhash+l
essfs

Fig. 5. Stored data size in MooseFS, MooseFS with lessfs, and MooseFS with
consistent hashing and lessfs

87.43 86.83 87.63

102.50 105.33
99.49

89.09
81.31 84.36

0.00

20.00

40.00

60.00

80.00

100.00

120.00

single copy duplicate 1 duplicate 2

Ex
ec
ut
io
n
Ti
m
e(
se
c)

Default MooseFS

MooseFS+lessfs

MooseFS+conhash
+lessfs

Fig. 6. Execution time in MooseFS, MooseFS with lessfs, and MooseFS with consistent
hashing and lessfs

In Fig. 5, Default MooseFSmeans stored data size in default MooseFS which
not use lessfs. MooseFS+lessfs means stored data size in deduplication on de-
fault MooseFS that provide default chunk placement. MooseFS+conhash+lessfs
means stored data size in deduplication on MooseFS that provide chunk place-
ment using consistent hashing. Fig. 5 shows that our chunk placement scheme



Content-Based Chunk Placement Scheme for Decentralized Deduplication 181

is more effective than chunk placement scheme of default MooseFS. Data size
of single copy is more than 936 MB because lessfs creates metadata to manage
data. We define deduplication rate as 100 - ((single copy size × a number of du-
plicate) ÷ actual stored data size × 100). Deduplication rate of MooseFS+lessfs
is about 12%. In this regard, chunk placement scheme is needed for improving
deduplication rate. Therefore, we experiment applying chunk placement with
consistent hashing. As a result, deduplication rate is about 99%. This result
shows that proposed system reduces the storage space by 60% than the sys-
tem without consistent hashing. All data is not eliminated because lessfs creates
metadata about duplicated data.

In single copy of Fig. 6, execution time of MooseFS+conhash+lessfs is slightly
slower than Default MooseFS because of chunk hashing and deduplication over-
head. However, duplicated file copy causes fewer write operation due to elimi-
nating duplicated data. Because MooseFS+lessfs does not use content-based
chunk placement, MooseFS+lessfs rerely performs deduplication. Therefore,
MooseFS+lessfs is slower than the others. Duplicated file copy of MooseFS+con
hash+lessfs is faster than single copy and duplicated copy of Default MooseFS.

5 Conclusion

In this paper, we study content-based chunk placement for decentralized dedu-
plication on the DFS. We describe how we design our system in detail. We utilize
open-source based DFS (MooseFS) and deduplication file system (lessfs). We in-
tegrate the chunk server of MooseFS with lessfs. Therefore, contrary to general
deduplication studies, our system can avoid the bottleneck of master server be-
cause each chunk server performs decentralized deduplication processes. More-
over, in order to reduce chunk hash overhead, we design content-based chunk
placement with consistent hashing that hash foremost 4 KB of chunk data. As
a result, experimental results show that proposed system reduces the storage
space by 60% than the system without consistent hashing and execution time of
proposed system is similar to execution time of default MooseFS.

Acknowledgements. This work was supported by the IT R&D program of
MKE/KEIT. [10041244, SmartTV 2.0 Software Platform].

References

1. Gantz, J., Reinsel, D.: 2011 Digital Universe Study: Extracting Value from Chaos.
Technical report, IDC (2011)

2. Gantz, J., Reinsel, D.: The Digital Univers. In: 2020: Big Data, Bigger Digital
Shadows, and Biggest Growth in the Far East. Technical report, IDC (2011)

3. DuBois, L., Amaldas, M.: IDC key-considerations deduplication. Technical report,
IDC (2010)

4. Webb, N.: Open Source Data Deduplication. In: Linuxfest Northwest, Bellingham,
WA, USA (April 2011)



182 K. Kim et al.

5. Koutoupis, P.: Data Deduplication with Linux. 7 (2011)

6. MooseFS, http://www.moosefs.org

7. Hupfeld, F., Cortes, T., Kolbeck, B., Stender, J., Focht, E., Hess, M., Malo, J.,
Marti, J., Cesario, E.: The XtreemFS architecture—a case for object-based file
systems in Grids. Concurrency and Computation: Practice and Experience 20(17),
2049–2060 (2008)

8. XtreemFS, http://www.xtreemfs.org

9. GlusterFS, http://www.gluster.org

10. Weil, S., Brandt, S., Miller, E., Long, D., Maltzahn, C.: Ceph: A scalable, high-
performance distributed file system. In: Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (OSDI), pp. 307–320 (2006)

11. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. ACM SIGOPS
Operating Systems Review 37, 29–43 (2003)

12. Thanh, T., Mohan, S., Choi, E., Kim, S., Kim, P.: A taxonomy and survey on
distributed file systems. In: Fourth International Conference on Networked Com-
puting and Advanced Information Management, NCM 2008, vol. 1, pp. 144–149.
IEEE (2008)

13. Srinivasan, K., Bisson, T., Goodson, G., Voruganti, K.: iDedup: Latency-aware, in-
line data deduplication for primary storage. In: Proceedings of the Tenth USENIX
Conference on File and Storage Technologies (FAST 2012), San Jose, CA (2012)

14. Meyer, D., Bolosky, W.: A study of practical deduplication. ACM Transactions on
Storage (TOS) 7(4), 14 (2012)

15. El-Shimi, A., Kalach, R., Kumar, A., Oltean, A., Li, J., Sengupta, S.: Primary
Data Deduplication-Large Scale Study and System Design. In: Proccedings of the
USENIX Annual Technical Conference 2012 (2012)

16. Dubnicki, C., Gryz, L., Heldt, L., Kaczmarczyk, M., Kilian, W., Strzelczak, P.,
Szczepkowski, J., Ungureanu, C., Welnicki, M.: Hydrastor: A scalable secondary
storage. In: Proccedings of the 7th Conference on File and Storage Technologies,
pp. 197–210. USENIX Association (2009)

17. Lillibridge, M., Eshghi, K., Bhagwat, D., Deolalikar, V., Trezise, G., Camble, P.:
Sparse indexing: large scale, inline deduplication using sampling and locality. In:
Proccedings of the 7th Conference on File and Storage Technologies, pp. 111–123
(2009)

18. Wei, J., Jiang, H., Zhou, K., Feng, D.: Mad2: A scalable high-throughput exact
deduplication approach for network backup services. In: 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST), pp. 1–14. IEEE (2010)

19. Zhu, B., Li, K., Patterson, H.: Avoiding the disk bottleneck in the data domain
deduplication file system. In: Proceedings of the 6th USENIX Conference on File
and Storage Technologies, vol. 18 (2008)

20. Clements, A., Ahmad, I., Vilayannur, M., Li, J., et al.: Decentralized deduplication
in SAN cluster file systems. In: Proceedings of the 2009 Conference on USENIX
Annual Technical Conference, p. 8. USENIX Association (2009)

21. Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanidina, R., Iwamoto,
K., Kim, B., Matkins, L., Yerushalmi, Y.: Web caching with consistent hashing.
Computer Networks 31(11), 1203–1213 (1999)

22. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the World Wide Web. In: Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, pp. 654–663. ACM (1997)

http://www.moosefs.org
http://www.xtreemfs.org
http://www.gluster.org


Content-Based Chunk Placement Scheme for Decentralized Deduplication 183

23. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. ACM SIGOPS Operating Systems Review 41, 205–220 (2007)

24. Cassandra, http://cassandra.apache.org
25. Memcached, http://memcached.org/
26. Chen, F., Luo, T., Zhang, X.: CAFTL: A content-aware flash translation layer

enhancing the lifespan of flash memory based solid state drives. In: Proceedings
of the 9th USENIX Conference on File and Stroage Technologies, p. 6. USENIX
Association (2011)

http://cassandra.apache.org
http://memcached.org/

	Content-Based Chunk Placement Scheme for Decentralized Deduplication on Distributed File Systems
	1 Introduction
	2 Background and Related Work
	2.1 DFS
	2.2 Data Deduplication in Local File System
	2.3 Related Work

	3 Design and Implementation
	3.1 Chunk Placement of Existing MooseFS
	3.2 Deduplication on MooseFS
	3.3 Consistent Hashing for MooseFS

	4 Evaluation
	5 Conclusion
	References




