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Since just-in-time (JIT) has considerable overhead to 
detect hot spots and compile them at runtime, using 
sophisticated optimization techniques for embedded 
devices means that any resulting performance 
improvements will be limited. In this paper, we introduce 
a novel static Dalvik bytecode optimization framework, as 
a complementary compilation of the Dalvik virtual 
machine, to improve the performance of Android 
applications. Our system generates optimized Dalvik 
bytecodes by using Low Level Virtual Machine (LLVM). 
A major obstacle in using LLVM for optimizing Dalvik 
bytecodes is determining how to handle the high-level 
language features of the Dalvik bytecode in LLVM IR and 
how to optimize LLVM IR conforming to the language 
information of the Dalvik bytecode. To this end, we 
annotate the high-level language features of Dalvik 
bytecode to LLVM IR and successfully optimize Dalvik 
bytecodes through instruction selection processes. Our 
experimental results show that our system with JIT 
improves the performance of Android applications by up 
to 6.08 times, and surpasses JIT by up to 4.34 times. 
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I. Introduction 

Mobile devices have limited processing power, memory, and 
battery life; thus, optimizing mobile applications for better 
performance is critical for their successful deployment [1]. 
However, since optimization requires high-level technical 
expertise, it is a daunting task for an application developer. 
Therefore, automatic code optimization techniques are widely 
used to achieve high performance in applications for mobile 
devices. 

An Android application is written in Java language for 
developer productivity and code mobility. On desktop and 
server environments, a Java program is compiled to Java 
bytecodes, which is an intermediate representation (IR) for 
Java Virtual Machine (JVM); JVM runs the Java bytecodes. A 
Java bytecode is based on a stack-based instruction set (hence 
the term “stack-based Java bytecode”) and has object-oriented 
features in Java language. On the other hand, Android 
applications written in Java language are run on Dalvik Virtual 
Machine (DVM) [2], which is an optimized virtual machine 
for the Android platform. However, since the performance of 
stack-based Java bytecode on resource-limited mobile devices 
is poor due to slow interpretation, Android researchers have 
created a new bytecode set for DVM — Dalvik bytecode — to 
improve the performance of Android applications. In contrast 
to the Java bytecode, the Dalvik bytecode is based on a 
register-based instruction set; therefore, it can reduce the code 
size and running time [3]–[4]. 

In terms of automatic code optimization, JVM researchers 
have devoted most of their efforts in developing just-in-time 
(JIT) compilers rather than in developing static Java compilers 
[5]–[6]. However, when applications run, considerable runtime 
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overhead, a byproduct of JIT compilation, is incurred in the 
detection of hot spots and their subsequent transformation  
into machine codes [7]. Moreover, since JIT compilation has 
additional processing and memory space overhead, DVM JIT 
[8] adopts only simple optimization techniques that have low 
overhead. Optimization techniques implemented in Dalvik JIT 
can be classified into the following three classes: local 
optimization, global optimization, and simple peephole 
optimization. The local optimization techniques in Dalvik JIT 
are constant propagation, register allocation, redundant 
load/store elimination, redundant null-check elimination, and 
heuristic scheduling such as load hoisting and store sinking. 
The global optimization techniques include redundant branch 
elimination and induction variable optimization.  

Peephole optimization performs power-reduction in 
multiplication and division operations. Due to the high runtime 
overhead, more sophisticated optimization techniques such as 
aggressive loop optimization and peephole optimization are not 
implemented in DVM JIT. In addition, the scope of method 
inlining is limited only to string, math, and atomic operations.   

In Android 4.4, ART runtime [9] was introduced, which is a 
new Android runtime to boost the performance of Android 
devices based on ahead-of-time compilation. ART runtime 
precompiles Dalvik bytecode to binary during installation of an 
application, and the resulting binary code is then executed 
directly at runtime of an application. However, this scheme 
requires considerable install time of an application and more 
space and memory footprint than existing Dalvik bytecode. 

Previous studies to improve the performance of Android 
applications can be largely classified into two areas — those 
that adopt complementary compilations of DVM [10]–[11] and 
those that adopt modifications of DVM [4], [11]–[13]. 
However, previous studies have yet to adequately apply their 
optimization techniques to new versions of DVM because their 
techniques adopt the unique compilation on a particular version 
of DVM and a special hardware support. With regard to the 
first of these issues, since the Android platform is under active 
development, it requires a lot of effort to maintain the various 
modifications of DVM when a new version becomes available. 
Moreover, because Android applications are composed of 
Dalvik bytecodes, previous transformation techniques for Java 
codes are not helpful in optimizing Android applications [14]–
[16]. With regard to the second of these issues, development of 
a new optimization system [17]–[18] requires considerable 
efforts on the part of developers to develop and verify any such 
new systems; thus, it is costly in terms of time and effort. From 
this perspective, using a mature compiler infrastructure, such as 
Low Level Virtual Machine (LLVM) [19]–[20] and GCC [21], 
has clear advantages in terms of development efforts and 
maturity. While previous studies [14]–[15] also used mature 

compiler infrastructures to transform Java programs to 
machine codes, they are not considered for execution on 
mobile devices due to their high resource requirements. 

In this paper, we introduce a novel static Dalvik bytecode 
optimization system to complement the DVM. We elaborate 
on optimizations to transform the Dalvik bytecodes into 
optimized Dalvik bytecodes. Since the final output of our 
system is in that of a Dalvik bytecode format, we can improve 
the performance of Android applications without any runtime 
overhead, while maintaining code mobility. We make the 
following contributions in this paper: 
■ We find that there are further opportunities to optimize 

Dalvik bytecodes in Android applications. 
■ We design and implement a static Dalvik bytecode 

optimization framework by exploiting optimization passes   
in LLVM. We discuss the challenges involved in handling 
high-level language features in LLVM and determine how to 
optimize the Dalvik bytecode. 

■ We evaluate our Dalvik bytecode optimization framework by 
using several benchmarks and show its effectiveness. 
The remainder of this paper is organized as follows. In 

Section II, we describe the design and implementation of our 
static Dalvik bytecode optimization framework. Experimental 
results are shown in Section III. In Section IV, related work is 
described. Finally, in Section V, we conclude the paper. 

II. Static Dalvik Bytecode Optimization 

In this section, we discuss how our framework optimizes  
the Dalvik bytecode while preserving the high-level language 
features of the bytecode itself. Our system at first transforms 
Dalvik bytecode to LLVM IR and statically optimizes the 
transformed LLVM IR. It then finally generates the optimized 
Dalvik bytecode from the optimized LLVM IR. For an 
explanation, we use the sample code in Fig. 1 and show the 
optimized code in Figs. 2, 5, and 6. 

1. Motivating Example 

Figure 1 illustrates the motivating example of our research. 
The Java code shown in Fig. 1(a) is transformed into the Java 
bytecode shown in Fig. 1(b) and again into the Dalvik 
bytecode shown in Fig. 1(c). Since the summation statement, 
sum = a + b, shown in dark gray is invariant regardless of the 
loop iterations, it can be removed from the loop represented  
by the dotted box to avoid unnecessary computation. This 
optimization technique is called loop-invariant code motion — 
a widely used compiler optimization technique. Lines 4 to 7 in 
Fig. 1(b) and Line 9 in Fig. 1(c) are Java bytecode and Dalvik 
bytecode corresponding to Line 6 in Fig. 1(a), respectively. As  
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word_data: 

1: Loop invariant. loopinvariant: (II) 

2: 0000: const/4 v0, #int 0 

3: 0001: const/16 v1, #int 100 

4: 0003: new-array/16 v2, v1, int [] 

5: 0005: move v1, v0 

6: 0006: if-ge v0, v4, 0012 

7: 0008: add-int v1, v4, v5 

8: 000a: mul-int/lit8 v3, 4: v0, #int 6 

9: 000c: add-int/2addr v3, v1 

10: 000d: aput v3, v2, v0 

11: 000f: add-int/lit8 v0, v0, #int 1 

12: 0011: goto 0006 

13: 0012: add-int/lit8 v0, v4, #int –1 

14: 0014: aget v0, v2, v0 

15: 0016: add-int/2addr v0, v1 

16: 0017: return v0 

Fig. 1. Motivating example: (a) Java code, (b) Java bytecode, and 
(c) Dalvik bytecode. 

1: public class Loopinvariant{ 

2:     public static int loopinvariant (int a, int b){ 

3:         int sum = 0; 

4:         int [] max = new int[100]; 

5:         for (int I = 0; I < a: i++){ 

6:               sum = a + b; Redundant computation in loop 

7:              max[i] = 6×i + sum; 

8: } 

(a) 

1: public class Loopinvariant extends java. 

lang.object{ 

2: public static int loopinvariant (int, int) 

3: if_icmpge 24 

4: iload_0 

5: iload_1 

6: iadd 

7: istore_2 

8: aload_3 

9: iload_4 

10: bipush 6 

11: iload_4 

12: imul 

13: iload_2 

14: iadd 

15: iastore 

16: iinc 4, 1 

17: goto 7 

 

Redundant computation  
in loop 

  

(b) (c) 

 
shown in Figs. 1(b) and 1(c), although the Java code in     
Fig. 1(a) is compiled by the Java compiler and transformed by 
the Dx tool [22], we find that the loop-invariant statement, add-
int/2addr v3, v1, in the dark gray box remains inside the loop; 
consequently, this statement becomes a redundant operation, 
directly decreasing program performance.  

To measure how redundant statements decrease the 
performance, we run the motivating example in Fig. 1(a) on an 
Android device. When we manually optimized the code of  
Fig. 1(a) by removing the loop-invariant code, its performance 
improvement is 21% in only-DVM interpretation and 90% in 
JIT-enabled DVM interpretation (even though the resulting 
sample code is relatively simple). This demonstrates that 
performance can significantly be improved by performing 
static aggressive optimization before JIT compilation. Since 
static optimization can perform aggressive optimization 
techniques without any runtime overhead, it is beneficial in 
particular to Android mobile devices with limited processing 
power, memory, and battery. 

2. Comparison between Dalvik Bytecode and LLVM IR 

Our Dalvik bytecode optimization system exploits LLVM 
for extensive static optimization of the Dalvik bytecode as a 

Table 1. Comparison between Dalvik bytecode, LLVM IR, and 
machine code. 

 Dalvik bytecode LLVM IR Machine code

Class information Yes No No 

SSA form Yes (conditional) Yes No 

Register type Dynamic Static Static 

 

 
complementary compilation for DVM. LLVM [19]–[20] is a 
mature compiler infrastructure that uses a language-
independent low-level instruction set, called LLVM IR. LLVM 
front-end generates the LLVM IR code from application code. 
After the LLVM optimizer optimizes the LLVM IR code in a 
language-independent way using aggressive optimization 
passes, the LLVM back-end optimizes the LLVM IR code in a 
target architecture–dependent way; finally, the machine codes 
of the target architecture are generated. Therefore, resolving  
the impedance mismatches between the high-level Dalvik 
bytecode and the low-level LLVM IR code is challenging 
when attempting to create a static optimization system for 
Dalvik bytecode using LLVM.  

To understand the characteristics of the Dalvik bytecode and 
LLVM IR, we compare the Dalvik bytecode, LLVM IR, and 
the machine code in Table 1. An Android application written in 
Java language is compiled to .class file (Java bytecode) by the 
Java compiler. The Dx tool transforms the .class file to a 
Dalvik executable file (.dex) that is composed of Dalvik 
bytecodes. During transformation, the Dx tool performs  
simple optimizations including register allocation, dead code 
elimination, constant propagation, and constant folding [23]. In 
contrast to the LLVM IR, the Dalvik bytecode uses an infinite 
number of virtual registers. A virtual register’s type is 
determined by the mnemonic code of the Dalvik bytecode that 
uses it. Moreover, the Dalvik bytecode has high-level language 
features that are derived from the Java program to describe 
class information and class inheritance. However, similar to the 
IR of most compilers, LLVM IR does not have such high-level 
language features. LLVM includes only four derived types — 
pointer, array, structure, and function [19]. High-level data 
types are represented as a combination of these four types. 
These four derived types are used in complicated language-
independent analyses and optimizations. The register of LLVM 
IRs is already set according to an instruction and is in static 
single assignment (SSA) form to facilitate analyses and 
optimization passes. 

3. Translation to LLVM IR 

When we regenerate the Dalvik bytecode from LLVM IR  
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Fig. 2. LLVM IR code of motivating example. 

1: define i32 @loopinvariant (i32 %arg0, i32 %arg1) { 

2: bb:     %0 = call i32 @llvm.dalvik.newArray (i32 100, i32 4) 

3: br label %bb15 

4: 

5: bb15: 

6: %11.0 = phi i32 [0, %bb], [%2, %bb4] 

7: %10.0 = phi i32 [0, %bb], [%5, %bb4] 

8: %1 = icmp uge i32 %10.0, %arg0 

9: br i1 %1, label %bb5, label %bb4 

10: 

11: bb4: 

12: %2 = add i32 %arg0, %arg1 Redundant computation in loop 

13: %3 = mul i32 %l0.0, 6 

14: %4 = add i32 %3, %2 

15: call void @llvm.dalvik.aput (i32 %4, i32 %0, i32 %10.0) 

16: %5 = add i32 %10.0, 1 

17: br label %bb15 

18: 

19: bb5: 

20: %6 = add i32 %arg0, –1 

21: %7 = call i32 @llvm.dalvik.aget (i32 %0, i32 %6) 

22: %8 = add i32 %7, %11.0 

23: ret i32 %8 

 
 
code, we should preserve the high-level language features of 
the original Dalvik bytecode. The beginning portion of Dalvik 
bytecode is composed of several constant pool sections, 
including string ids, type ids, method ids, class definitions, and 
word data. These sections represent strings; types of variables 
and methods; methods of classes; class information; and data in 
classes. To handle the impedance mismatch between Dalvik 
bytecode and LLVM IR code described in Section II-2, we 
annotate these high-level language features of the Dalvik 
bytecode into LLVM IR code using metadata, and create the 
intrinsic functions for the Dalvik instructions, which do not 
have any direct correspondence in LLVM IR code [24]–[26]. 
In the LLVM, intrinsic functions are used to add new 
fundamental types and new instructions to extend LLVM IR 
[27]. In our system, since an LLVM transformation pass does 
not change the metadata, an intrinsic function maintains the 
metadata for high-level language features, such as class 
information and inheritance, during optimization and code 
regeneration. 

Our system first parses the Dalvik bytecode and then 
generates metadata from the constant pool sections. The 
metadata of a method is described as a sequence of the method 
name, access flag, return type, parameter count, and parameter 
type. If a Dalvik bytecode instruction has a corresponding 
LLVM IR instruction, then our system generates the LLVM IR 
instruction as shown in Fig. 2 for the Dalvik bytecode 
instruction shown in Fig. 1(c). Otherwise, it generates an 
intrinsic function [27] — the name of which is the same as the 
Dalvik bytecode instruction. For example, since “aput” 

 
1: llvm.dvk.strings = !{!0, !1, !2, !3, !4, !5, !6, !7, !8, !9, !10, !11} 

2: llvm.dvk.types = !{!1, !3, !4, !6, !8, !9} 

3: llvm.dvk.class = !{!12} 

4: init = !{!13} 

5: loopinvariant = !{!14} 

 

13: !0 = metadata !{metadata !“<init>”} 

14: !1 = metadata !{metadata !“I”} 

15: !2 = metadata !{metadata !“III”} 

16: !3 = metadata !{metadata !“LLoopinvariant;”} 

17: !4 = metadata !{metadata !“Ljava/lang/Object;”} 

18: !5 = metadata !{metadata !“Loopinvariant.java”} 

19: !6 = metadata !{metadata !“V”} 

20: !7 = metadata !{metadata !“VL”} 

21: !8 = metadata !{metadata !“[I”] 

22: !9 = metadata !{metadata !“[Ljava/lang/String;”] 

23: !10 = metadata !{metadata !“loopinvariant”} 

24: !11 = metadata !{metadata !“main”} 

25: !12 = metadata !{metadata !“LLoopinvariant;”, metadata !“Ljava/lang/Object;”, i32 

1} 

26: !13 = metadata !{metadata !“<init>,” i32 65537, i32 3, i32 0} 

27: !14 = metadata ! 

{metadata !“loopinvariant,” i32 9, i32 0, i32 2, i32 0, i32 0} 

Fig. 3. Metadata in LLVM IR code. 

…
 

 
 
instruction at Line 10 in Fig. 1(c), which stores a register value 
to a given array element with given array index, has no 
corresponding LLVM IR instruction, an intrinsic function 
“void @llvm.Dalvik.aput” underlined at Line 15 in Fig. 2 is 
generated. In LLVM optimization passes, an intrinsic function 
is treated as an unanalyzable function. In this way, 43 Dalvik 
bytecode instructions among 256 bytecode instructions are 
translated to intrinsic functions: for example, “aput, aget, sput, 
sget,” and so on. 

Figure 3 shows the metadata translated from the Dalvik 
bytecode shown in Fig. 1(c) through the front-end compiler of 
our system. Each metadata in a dotted box includes variables 
and methods in a class as follows: 
■ Types of string, variables, and methods in the Dalvik bytecode 

(from “metadata !0” at Line 13 to “metadata !11” at Line 24). 
■ Class information (“metadata !12” at Line 25). 
■ Methods information (from “metadata !13” at Line 26 and 

“metadata !14” at Line 27). 
For example, in “metadata !14” at Line 27 of Fig. 3, the first 

argument, “loopinvariant,” describes the method name. The 
second argument is an access flag of the “loopinvariant” 
method, where “i32 9” represents public static method whose 
type is determined in the DVM library. The third argument is 
the return type of the method, where “i32 0” indicates the first 
argument (!1) of “llvm.dvk.types” at Line 2, and the metadata 
“I” at Line 14 (!1) refers to an integer type. The fourth 
argument is the number of parameters, and the fifth and sixth 
arguments are the presented parameter types. Since the fourth, 
fifth, and sixth arguments are “i32 2,” “i32 0,” and “i32 0,” 
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respectively, the number of parameters is two, and the type of 
the two parameters is integer, as described above.  

4. Optimization and Generation of Dalvik Bytecode  

An LLVM static optimizer [28] optimizes the LLVM IR 
code generated by our front-end compiler, in both a target-
dependent way and a target-independent way. 

Figure 4 illustrates how our static Dalvik bytecode 
optimization improves the code quality of Android applications, 
where the gray shaded boxes indicate our optimization 
components. The “Dalvik bytecode instruction selection” 
phase optimizes LLVM IR code using Dalvik bytecode 
descriptions to select instructions and operands target-
dependently [29]–[30]. Dalvik bytecode descriptions consist of 
language characteristics for Dalvik bytecodes, including 
instruction and register information. In the “Dalvik bytecode 
instruction selection” phase, LLVM IR code is translated into 
an initial directed acyclic graph (DAG), in which the nodes 
specify the operations and operands of each instruction. Using 
an initial DAG helps LLVM to optimize the Dalvik bytecodes 
target-independently on a very low level. The “Optimize 
DAG” phase simplifies the initial DAG by eliminating 
redundancies exposed by the previous step, before and after the 
“Legalize DAG” phase. The “Legalize DAG” phase 
transforms the DAG to eliminate the types and operations that 
are not supported by the Dalvik VM. The “Instruction 
selection” phase for the DAG linearizes DAG into Dalvik 
bytecode instructions by using pattern matching. Then, the  
 

 

Fig. 4. Static Dalvik bytecode optimization. 

Dalvik bytecode 
to LLVM IR 

Front-end 

Dalvik bytecode 
description Dalvik 

bytecode 

Build initial DAG 

Optimize DAG 

Legalize DAG 

Optimize DAG 

Legalize DAG 

Optimize DAG 

Dalvik 
bytecode 

instruction 
selection 

Instruction selection for 
DAG 

Target-independent 
DAG to target 

instruction 

SSA-based Dalvik 
bytecode optimizations 

Dalvik bytecode  
register allocation 

Late Dalvik bytecode 
optimizations 

Dalvik bytecode printer 

Optimized Dalvik 
byteocede 

 Pre-RA tail duplication 
 PHI optimization 
 Machine LICM, CSE, DCE
 Peephole optimization  
 Etc. 

 Peephole optimization 
 Branch folding and simplification 
 Tail duplication  
 Reg-reg copy propagation 
 Post RA scheduler  
 Etc. 

 

Dalvik bytecode is optimized using SSA-based optimization, 
including loop-invariant code motion, dead code elimination, 
common subexpression elimination, and peephole 
optimization. In the “Register allocation” stage, the number of  

 

 1: define i32 @loopinvariant (i32 %arg0, i32 %arg1) { 
2: bb: 
3: %0 = call i32 @llvm.dalvik.newArray (i32 100, i32 4) 
4: %1 = add i32 %arg0, %arg1  Hoisting redundant computation out of the 

loop 
5: br label %bb15 
6: 
7: bb15: 
8: %10.0 = phi i32 [0, %bb], [%5, %bb4] 
9: %2 = icmp uge i32 %10.0, %arg0 
10: br i1 %2, label %bb5, label %bb4 
11: 
12: bb4:  
13: %3 = mul i32 %10.0, 6 
14: %4 = add i32 %3, %1 
15: call void @llvm.dalvik.aput (i32 %4, i32 %0, i32 %10.0) 
16: %5 = add i32 %10.0, 1 
17: br label %bb15 
18:  
19: bb5:   
20: %6 = add i32 %arg0, –1 
21: %7 = call i32 @llvm.dalvik.aget (i32 %0, i32 %6) 
22: %8 = add i32 %7, %1 
23: ret i32 %8 
24: } 

Fig. 5. Optimized LLVM IR code of motivating example.  
 

 

Fig. 6. Optimized Dalvik bytecode of motivating example. 

1: .method public static loopinvariant (II)I 

2:     .registers 6 

3:     .parameter 

4:     .parameter 

5:  

6:     .prologue 

7: const/4 v0, 0x0 

8: const/16 v1, 0x64 

9: new-array v2, v1, [I 

10: move v1, v0 

11: add-int v1, p0, p1  Hoisting redundant computation out of the loop 

12: 

13: :goto_6 

14: if-ge v0, p0, :cond_12 

15: mul-int/lit8 v3, v0, 0x6 

16: add-int/2addr v3, v1 

17: aput v3, v2, v0 

18: add-int/lit8 v0, v0, 0x1 

19: goto :goto_6 

20: 

21: :cond_12 

22: add-int/lit8 v0, p0, –0x1 

23: aget v0, v2, v0 

24: add-int/2addr v0, v1 

25: return v0 

26: .end method 

27: .method public static 
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virtual registers in SSA form is decreased to 15, which is the 
number of general-purpose registers in our target architecture, 
ARMv7. Subsequently, Dalvik bytecodes are optimized by 
final Dalvik bytecode-dependent optimization including 
peephole optimization. Finally, the optimized Dalvik bytecodes 
are printed out using the LLVM MC infrastructure.  

Figure 5 shows the optimized LLVM IR code generated by 
our static optimization. In Fig. 5, the redundant computation at 
Line 4, “%1 = add i32 %arg0, %arg1,” shown in the dark gray 
box was removed from the loop in the dotted box. Finally, the 
back-end of our system generates the optimized Dalvik 
bytecode, where the summation instruction is removed from 
the loop (as shown in Fig. 6).  

As mentioned above, our approach finally generates 
optimized Dalvik bytecode before it is executed in DVM. After 
starting the execution of the Dalvik bytecode, a typical DVM 
JIT compiler handles the reference types and garbage 
collection. Because of our aggressive optimization, our 
approach can give positive effects on dealing with these 
operations (reference types and garbage collection) during 
executing the Dalvik bytecode. 

III. Evaluation 

To evaluate our static Dalvik bytecode optimization system, 
we first ran four micro-benchmarks and two real benchmarks, 
which were downloaded from the Google application market 
(Benchmark Pi [31], EmbeddedCaffeineMark 3.0 [32]). We 
compared the scores of the benchmarks in four configurations 
— baseline, JIT, baseline with static optimization, and JIT  
with static optimization. In the baseline configuration, DVM 
performs only interpretation without either JIT or our static 
optimization. We use the baseline configuration as the baseline 
for measuring normalized performance improvement of other 
schemes. In the JIT configuration, DVM performs both the 
interpretation and JIT compilation. In the configurations with 
static optimization, the Dalvik bytecodes are statically 
optimized before running on DVM. In addition, we compare 
the performance of our static optimization scheme with other 
studies [10], [15]. All experiments are performed on a reference 
phone, Galaxy Nexus [33], running Android 4.0.1, with    
1.2 GHz TI OMAP 4660 ARM Cortex-A9 dual core and 1 GB 
memory. In addition, to evaluate our system on another 
Android device, we performed EmbeddedCaffeineMark 3.0 on 
Galaxy S4, running Android 4.4.2, with 2.2 GHz Qualcomm 
Snapdragon 800 Krait 400 quad core and 2GB memory. 

1. Performance of Static Dalvik Bytecode Optimization 

We developed four micro benchmarks — loop-invariant  

 

Fig. 7. Normalized performance improvement of micro benchmarks.
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Fig. 8. Normalized performance improvement of Benchmark Pi.
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code motion (Fig. 1(a)), loop splitting, loop unswitching, and 
partial redundancy elimination. Each micro benchmark is a 
program that can be optimized by the above-mentioned 
optimization techniques. Figure 7 shows that our static 
optimization scheme significantly improves performance, 
where the performance measure is execution speed for each 
micro benchmark. As we expected, the best performance is 
achieved by using both the JIT compilation and static 
optimization. The average performance improvement in the 
micro benchmarks is 64%. 

For real benchmarks, we evaluated EmbeddedCaffeinemark 
3.0 [32] and Benchmark Pi [31]. These are popularly used 
benchmarks for testing the performance of DVM JIT [8], [10]. 
First, Benchmark Pi calculates the ratio of the circumference of 
a circle to its diameter. Figure 8 shows the normalized 
performance improvement of Benchmark Pi under the four 
configurations, where the performance measure is execution 
speed. The baseline with static optimization outperforms the 
baseline by 1.81 times and the JIT with static optimization 
outperforms the baseline by 2.13 times. The experimental 
results clearly show that our system significantly improves the 
performance of Android applications by statically optimizing 
the Dalvik bytecodes. 

Second, EmbeddedCaffeineMark 3.0 is used for our evaluation.  
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Fig. 9. EmbeddedCaffeineMark 3.0 scores on Galaxy Nexus.
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Table 2. Average execution time of each benchmark. 

 
Baseline 

(s) 
JIT  
(s) 

Baseline with 
static 

optimization (s) 

JIT with static 
optimization 

(s) 

Loop invariant 7.65 5.24 6.28 4.02 

Loop splitting 10.98 8.54 8.27 6.53 

Loop unswitching 9.87 7.45 8.04 5.06 

Partial redundancy 
elimination 

6.16 6.01 6.07 6.01 

Benchmark Pi 0.66 0.41 0.34 0.29 

EmbeddedCaffeineMark 
3.0 

 23.80 

 

 
It is a subset of the complete CaffeineMark suite, including 
Sieve, Loop, Logic, Method, Float, and String [32]. First, Sieve 
is the classic Sieve of Eratosthenes (for prime numbers). Loop 
performs sorting and sequence generation for measuring the 
compiler optimization of loops. Logic measures the execution 
speed of decision-making instructions in a virtual machine. 
Method performs recursive function calls on a virtual machine. 
Float simulates a 3D rotation of objects around a point. Finally, 
String performs string concatenation, which is the operation of 
joining character strings end-to-end. The score is the number of 
executed instructions per second. Figure 9 shows the scores of 
EmbeddedCaffeineMark 3.0 under the four configurations in a 
logarithmic scale. As expected, the benchmark scores are the 
best when we use both the JIT compilation and static 
optimization; normalized performance acceleration relative to 
the baseline is increased by up to 6.08 times. Also, interpreting 
with static optimization achieves performance improvement by 
up to 5.22 times on average. Therefore, when an application is 
statically optimized, the JIT-compiled performance is 4.34 
times faster on average than that of no static optimization. 
Especially, in the case of the Logic benchmark in Fig. 9, we 
can observe that our static optimization system, simultaneously  

 

Fig. 10. EmbeddedCaffeineMark 3.0 scores on Galaxy S4. 
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with DVM JIT, improved the performance by about 10 times 
because of their efforts for more advanced optimization. 

Table 2 shows the average execution time of each 
benchmark, while each benchmark was run 10 times. 
EmbeddedCaffeineMark 3.0 cannot be measured individually, 
so the whole execution time of the benchmark is presented.  
In our experiment, each test is run for approximately the same 
length of time. 

To ensure that our experimental results are impartial to 
diverse hardware features, performed, another experiment with 
EmbeddedCaffineMark 3.0 on Galaxy S4, and showed the 
results in Fig. 10. In Fig. 10, as expected, similar results to 
those of Fig. 9 were achieved, and we can see that the 
benchmark scores are also the best when we use both the JIT 
compilation and static optimization; normalized performance 
acceleration relative to the baseline is increased by up to 3.17 
times on average. Moreover, interpreting with static 
optimization achieves performance improvement by up to 2.87 
times on average. Therefore, when an application is statically 
optimized, the JIT-compiled performance is 2.94 times faster 
on average than that of no static optimization. This 
experimental result clearly shows that our system can improve 
the performance of Android applications regardless of the type 
of hardware. 

2. Comparison with Other Optimization Schemes 

We compared the performance of our static Dalvik bytecode 
optimization scheme with the Java bytecode level optimizer 
[17] and another complementary compilation scheme for 
Android applications [10].  

Soot [17] is a Java optimization framework developed at 
McGill University. It can be used to optimize and analyze class 
files at a Java bytecode level [34]. For fair comparison, we 
statically optimized Java bytecodes of benchmarks, such as 
Benchmark Pi and EmbeddedCaffeineMark 3.0, by using the 
latest version of Soot with highest optimization options, 
enabling intra-procedural and whole program optimization.  
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Fig. 11. Normalized performance improvement of Benchmark Pi
for Soot. 
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Fig. 12. Normalized performance improvement of EmbeddedCaffeine
Mark 3.0 for Soot. 
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The optimized Java bytecodes are subsequently transformed to 
Dalvik bytecodes and run on the same machine as that 
described in Section III-1. We measured the score for the 
benchmarks and used DVM interpretation as the baseline, 
measuring the normalized performance improvement.  

Figure 11 shows that normalized performance of Benchmark 
Pi for Soot is improved, where we used execution speed as   
a performance measure. We observe that the JIT-compiled 
performance is 44% faster than the baseline performance.   
Figure 12 also shows that normalized performance of 
EmbeddedCaffeineMark 3.0 for Soot is improved and we can 
observe that the JIT-compiled performance is 48% faster than 
the baseline performance on average. As shown in Figs. 11 and 
12, Soot does not outperform DVM dramatically, because it 
performs only simple optimizations; that is, copy propagation, 
constant propagation, constant folding, dead assignment 
elimination, unconditional branch folding, unused local 
elimination, load store optimization, and peephole optimization. 

Icing [10] is a well-known complementary compilation 
technique for DVM. Unfortunately, we could not directly 
compare our results with those of Icing, because the Icing 
project is not accessible to the general public. Instead, we 
indirectly measured the performance of our optimization 

scheme against that of Icing by referring to the experimental 
results in [10]. We observe that our optimization scheme 
outperforms Icing for the same benchmark applications; 
whereas, Icing outperforms Dalvik JIT by 2.83 times, our 
system outperforms Dalvik JIT by 4.34 times.  

IV. Related Work 

Improving the performance of Android applications has 
received a lot of interest. Here, we discuss some studies that are 
most related to our work. 

1. Complementary Compilation with DVM 

Icing [10] converts hot methods in the Dalvik bytecode to C 
codes using the GCC compiler. The translated native codes are 
executed by DVM through calling the Java Native Interface. 
Lim and others [11] generate a hybrid DEX file that includes 
selective ahead-of-time compilation information based on the 
profiling information of hot methods, and then compile and 
execute the hybrid DEX file. BLOAT [16] eliminates common 
access expressions by performing partial redundancy 
elimination based on type-based alias analysis. It employs 
optimization between java class files at a bytecode-to-bytecode 
level. However, since BLOAT mainly focuses on exploiting 
intra-procedural analysis and optimization, the performance 
gain may be limited. As shown in Section III, the compilation 
with our static optimization and DVM JIT surpassed that of 
previous studies. 

2. Modification in DVM 

In Swift [4], the authors propose a lightweight JIT compiler 
for the ARM architecture, which is among the most popular on 
the Android platform. They use a simplified register allocation 
process for JIT based on the fact that in most Java methods 
eleven physical registers in the ARM core are sufficient to 
fulfill the virtual registers in DVM. Absar and Shekhar [12] 
improve the array bounds check optimization algorithm in 
DVM JIT so that it can handle indices such as affine functions 
of iterators, loop invariants, and literals. Modifying DVM 
causes maintenance problems since DVM is under active 
development. AccelDroid [13] is the HW/SW co-designed 
system for accelerating Android applications. To boost the 
power and performance efficiency of Android applications, a 
Dalvik bytecode–aware processor is implemented by co-
designing hardware and software; this is so that Dalvik 
bytecodes can be executed directly using dynamic binary 
translation on the special processor. ART runtime [9] performs 
ahead-of-time compilation from Dalvik bytecode to binary 
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during an application installation, and then the generated 
machine code is executed when the application is run. 
However, since ART runtime is still an ongoing project, the 
speed-up of performance is not dramatic — under 1.8 times  
on EmbeddedCaffeinemark 3.0 [9]. In conclusion, our static 
optimization can achieve higher performance of applications 
with less engineering overhead than those of DVM 
modification techniques. 

V. Conclusion 

In this paper, we proposed a static Dalvik bytecode 
optimization system for the performance improvement of 
Android applications. We found that Android applications, 
which are compiled by the Java compiler and transformed by 
the Dx tool, still offer considerable opportunities for further 
optimization with static compilation. We resolve the 
performance shortage by adopting static optimization with 
DVM JIT as a complementary compilation technique of DVM. 
We exploited a mature compiler infrastructure, LLVM, to 
enhance the code quality for Android applications. Moreover, 
we proposed techniques to close the gap between the high-
level Dalvik bytecode and the low-level LLVM IR code, and  
to optimize the LLVM IR code conforming to language 
information of Dalvik bytecode. Our experimental results show 
that the static Dalvik optimization system with DVM JIT 
surpasses interpretation in DVM by 6.08 times and DVM JIT 
by 4.34 times. 

Our optimization framework can also be applied for Android 
application executing in ART runtime. As mentioned in  
Section IV, ART runtime compiles Dalvik bytecode to native 
code using an on-device code translation tool in advance, and 
then directly executes the precompiled native code to boost the 
execution performance at runtime. However, this scheme 
inevitably requires considerable installation time and more 
memory space than DVM. We expect that the installation time 
and the amount of memory usage can be reduced by compiling 
the optimized Dalvik bytecode, which is generated by our 
framework, at code translation process in ART runtime. In 
addition, we believe that our aggressive optimization scheme 
can also give positive effects on code optimization in ART 
runtime, which remains as a future work. 
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