
ETRI Journal, Volume 37, Number 5, October 2015 © 2015 Jeehong Kim et al. 1001
http://dx.doi.org/10.4218/etrij.15.0114.0036

Since just-in-time (JIT) has considerable overhead to
detect hot spots and compile them at runtime, using
sophisticated optimization techniques for embedded
devices means that any resulting performance
improvements will be limited. In this paper, we introduce
a novel static Dalvik bytecode optimization framework, as
a complementary compilation of the Dalvik virtual
machine, to improve the performance of Android
applications. Our system generates optimized Dalvik
bytecodes by using Low Level Virtual Machine (LLVM).
A major obstacle in using LLVM for optimizing Dalvik
bytecodes is determining how to handle the high-level
language features of the Dalvik bytecode in LLVM IR and
how to optimize LLVM IR conforming to the language
information of the Dalvik bytecode. To this end, we
annotate the high-level language features of Dalvik
bytecode to LLVM IR and successfully optimize Dalvik
bytecodes through instruction selection processes. Our
experimental results show that our system with JIT
improves the performance of Android applications by up
to 6.08 times, and surpasses JIT by up to 4.34 times.

Keywords: Dalvik bytecode, static optimization, LLVM,
Android.

Manuscript received Jan. 29, 2014; revised June 2, 2015; accepted July 30, 2015.
This work was supported by Institute for Information & Communications Technology

Promotion (IITP) grant funded by the Korea government (MSIP) (10041244, SmartTV 2.0
Software Platform).

Jeehong Kim (jjilong@skku.edu), Inhyeok Kim (kkojiband@skku.edu), Changwoo Min
(changwoo@gatech.edu), and Young Ik Eom (corresponding author, yieom@skku.edu) are
with the College of Information and Communication Engineering, Sungkyunkwan University,
Suwon, Rep. of Korea.

Hyung Kook Jun (hkjun@etri.re.kr), Soo Hyung Lee (soohyung@etri.re.kr), and Won-Tae
Kim (wtkirn@koreatech.ac.kr) are with the SW & Contents Research Laboratory, ETRI,
Daejeon, Rep. of Korea.

I. Introduction

Mobile devices have limited processing power, memory, and
battery life; thus, optimizing mobile applications for better
performance is critical for their successful deployment [1].
However, since optimization requires high-level technical
expertise, it is a daunting task for an application developer.
Therefore, automatic code optimization techniques are widely
used to achieve high performance in applications for mobile
devices.

An Android application is written in Java language for
developer productivity and code mobility. On desktop and
server environments, a Java program is compiled to Java
bytecodes, which is an intermediate representation (IR) for
Java Virtual Machine (JVM); JVM runs the Java bytecodes. A
Java bytecode is based on a stack-based instruction set (hence
the term “stack-based Java bytecode”) and has object-oriented
features in Java language. On the other hand, Android
applications written in Java language are run on Dalvik Virtual
Machine (DVM) [2], which is an optimized virtual machine
for the Android platform. However, since the performance of
stack-based Java bytecode on resource-limited mobile devices
is poor due to slow interpretation, Android researchers have
created a new bytecode set for DVM — Dalvik bytecode — to
improve the performance of Android applications. In contrast
to the Java bytecode, the Dalvik bytecode is based on a
register-based instruction set; therefore, it can reduce the code
size and running time [3]–[4].

In terms of automatic code optimization, JVM researchers
have devoted most of their efforts in developing just-in-time
(JIT) compilers rather than in developing static Java compilers
[5]–[6]. However, when applications run, considerable runtime

Static Dalvik Bytecode Optimization for
Android Applications

 Jeehong Kim, Inhyeok Kim, Changwoo Min, Hyung Kook Jun, Soo Hyung Lee,
Won-Tae Kim, and Young Ik Eom

1002 Jeehong Kim et al. ETRI Journal, Volume 37, Number 5, October 2015
http://dx.doi.org/10.4218/etrij.15.0114.0036

overhead, a byproduct of JIT compilation, is incurred in the
detection of hot spots and their subsequent transformation
into machine codes [7]. Moreover, since JIT compilation has
additional processing and memory space overhead, DVM JIT
[8] adopts only simple optimization techniques that have low
overhead. Optimization techniques implemented in Dalvik JIT
can be classified into the following three classes: local
optimization, global optimization, and simple peephole
optimization. The local optimization techniques in Dalvik JIT
are constant propagation, register allocation, redundant
load/store elimination, redundant null-check elimination, and
heuristic scheduling such as load hoisting and store sinking.
The global optimization techniques include redundant branch
elimination and induction variable optimization.

Peephole optimization performs power-reduction in
multiplication and division operations. Due to the high runtime
overhead, more sophisticated optimization techniques such as
aggressive loop optimization and peephole optimization are not
implemented in DVM JIT. In addition, the scope of method
inlining is limited only to string, math, and atomic operations.

In Android 4.4, ART runtime [9] was introduced, which is a
new Android runtime to boost the performance of Android
devices based on ahead-of-time compilation. ART runtime
precompiles Dalvik bytecode to binary during installation of an
application, and the resulting binary code is then executed
directly at runtime of an application. However, this scheme
requires considerable install time of an application and more
space and memory footprint than existing Dalvik bytecode.

Previous studies to improve the performance of Android
applications can be largely classified into two areas — those
that adopt complementary compilations of DVM [10]–[11] and
those that adopt modifications of DVM [4], [11]–[13].
However, previous studies have yet to adequately apply their
optimization techniques to new versions of DVM because their
techniques adopt the unique compilation on a particular version
of DVM and a special hardware support. With regard to the
first of these issues, since the Android platform is under active
development, it requires a lot of effort to maintain the various
modifications of DVM when a new version becomes available.
Moreover, because Android applications are composed of
Dalvik bytecodes, previous transformation techniques for Java
codes are not helpful in optimizing Android applications [14]–
[16]. With regard to the second of these issues, development of
a new optimization system [17]–[18] requires considerable
efforts on the part of developers to develop and verify any such
new systems; thus, it is costly in terms of time and effort. From
this perspective, using a mature compiler infrastructure, such as
Low Level Virtual Machine (LLVM) [19]–[20] and GCC [21],
has clear advantages in terms of development efforts and
maturity. While previous studies [14]–[15] also used mature

compiler infrastructures to transform Java programs to
machine codes, they are not considered for execution on
mobile devices due to their high resource requirements.

In this paper, we introduce a novel static Dalvik bytecode
optimization system to complement the DVM. We elaborate
on optimizations to transform the Dalvik bytecodes into
optimized Dalvik bytecodes. Since the final output of our
system is in that of a Dalvik bytecode format, we can improve
the performance of Android applications without any runtime
overhead, while maintaining code mobility. We make the
following contributions in this paper:
■ We find that there are further opportunities to optimize

Dalvik bytecodes in Android applications.
■ We design and implement a static Dalvik bytecode

optimization framework by exploiting optimization passes
in LLVM. We discuss the challenges involved in handling
high-level language features in LLVM and determine how to
optimize the Dalvik bytecode.

■ We evaluate our Dalvik bytecode optimization framework by
using several benchmarks and show its effectiveness.
The remainder of this paper is organized as follows. In

Section II, we describe the design and implementation of our
static Dalvik bytecode optimization framework. Experimental
results are shown in Section III. In Section IV, related work is
described. Finally, in Section V, we conclude the paper.

II. Static Dalvik Bytecode Optimization

In this section, we discuss how our framework optimizes
the Dalvik bytecode while preserving the high-level language
features of the bytecode itself. Our system at first transforms
Dalvik bytecode to LLVM IR and statically optimizes the
transformed LLVM IR. It then finally generates the optimized
Dalvik bytecode from the optimized LLVM IR. For an
explanation, we use the sample code in Fig. 1 and show the
optimized code in Figs. 2, 5, and 6.

1. Motivating Example

Figure 1 illustrates the motivating example of our research.
The Java code shown in Fig. 1(a) is transformed into the Java
bytecode shown in Fig. 1(b) and again into the Dalvik
bytecode shown in Fig. 1(c). Since the summation statement,
sum = a + b, shown in dark gray is invariant regardless of the
loop iterations, it can be removed from the loop represented
by the dotted box to avoid unnecessary computation. This
optimization technique is called loop-invariant code motion —
a widely used compiler optimization technique. Lines 4 to 7 in
Fig. 1(b) and Line 9 in Fig. 1(c) are Java bytecode and Dalvik
bytecode corresponding to Line 6 in Fig. 1(a), respectively. As

ETRI Journal, Volume 37, Number 5, October 2015 Jeehong Kim et al. 1003
http://dx.doi.org/10.4218/etrij.15.0114.0036

word_data:

1: Loop invariant. loopinvariant: (II)

2: 0000: const/4 v0, #int 0

3: 0001: const/16 v1, #int 100

4: 0003: new-array/16 v2, v1, int []

5: 0005: move v1, v0

6: 0006: if-ge v0, v4, 0012

7: 0008: add-int v1, v4, v5

8: 000a: mul-int/lit8 v3, 4: v0, #int 6

9: 000c: add-int/2addr v3, v1

10: 000d: aput v3, v2, v0

11: 000f: add-int/lit8 v0, v0, #int 1

12: 0011: goto 0006

13: 0012: add-int/lit8 v0, v4, #int –1

14: 0014: aget v0, v2, v0

15: 0016: add-int/2addr v0, v1

16: 0017: return v0

Fig. 1. Motivating example: (a) Java code, (b) Java bytecode, and
(c) Dalvik bytecode.

1: public class Loopinvariant{

2: public static int loopinvariant (int a, int b){

3: int sum = 0;

4: int [] max = new int[100];

5: for (int I = 0; I < a: i++){

6: sum = a + b; Redundant computation in loop

7: max[i] = 6×i + sum;

8: }

(a)

1: public class Loopinvariant extends java.

lang.object{

2: public static int loopinvariant (int, int)

3: if_icmpge 24

4: iload_0

5: iload_1

6: iadd

7: istore_2

8: aload_3

9: iload_4

10: bipush 6

11: iload_4

12: imul

13: iload_2

14: iadd

15: iastore

16: iinc 4, 1

17: goto 7

Redundant computation
in loop

(b) (c)

shown in Figs. 1(b) and 1(c), although the Java code in
Fig. 1(a) is compiled by the Java compiler and transformed by
the Dx tool [22], we find that the loop-invariant statement, add-
int/2addr v3, v1, in the dark gray box remains inside the loop;
consequently, this statement becomes a redundant operation,
directly decreasing program performance.

To measure how redundant statements decrease the
performance, we run the motivating example in Fig. 1(a) on an
Android device. When we manually optimized the code of
Fig. 1(a) by removing the loop-invariant code, its performance
improvement is 21% in only-DVM interpretation and 90% in
JIT-enabled DVM interpretation (even though the resulting
sample code is relatively simple). This demonstrates that
performance can significantly be improved by performing
static aggressive optimization before JIT compilation. Since
static optimization can perform aggressive optimization
techniques without any runtime overhead, it is beneficial in
particular to Android mobile devices with limited processing
power, memory, and battery.

2. Comparison between Dalvik Bytecode and LLVM IR

Our Dalvik bytecode optimization system exploits LLVM
for extensive static optimization of the Dalvik bytecode as a

Table 1. Comparison between Dalvik bytecode, LLVM IR, and
machine code.

 Dalvik bytecode LLVM IR Machine code

Class information Yes No No

SSA form Yes (conditional) Yes No

Register type Dynamic Static Static

complementary compilation for DVM. LLVM [19]–[20] is a
mature compiler infrastructure that uses a language-
independent low-level instruction set, called LLVM IR. LLVM
front-end generates the LLVM IR code from application code.
After the LLVM optimizer optimizes the LLVM IR code in a
language-independent way using aggressive optimization
passes, the LLVM back-end optimizes the LLVM IR code in a
target architecture–dependent way; finally, the machine codes
of the target architecture are generated. Therefore, resolving
the impedance mismatches between the high-level Dalvik
bytecode and the low-level LLVM IR code is challenging
when attempting to create a static optimization system for
Dalvik bytecode using LLVM.

To understand the characteristics of the Dalvik bytecode and
LLVM IR, we compare the Dalvik bytecode, LLVM IR, and
the machine code in Table 1. An Android application written in
Java language is compiled to .class file (Java bytecode) by the
Java compiler. The Dx tool transforms the .class file to a
Dalvik executable file (.dex) that is composed of Dalvik
bytecodes. During transformation, the Dx tool performs
simple optimizations including register allocation, dead code
elimination, constant propagation, and constant folding [23]. In
contrast to the LLVM IR, the Dalvik bytecode uses an infinite
number of virtual registers. A virtual register’s type is
determined by the mnemonic code of the Dalvik bytecode that
uses it. Moreover, the Dalvik bytecode has high-level language
features that are derived from the Java program to describe
class information and class inheritance. However, similar to the
IR of most compilers, LLVM IR does not have such high-level
language features. LLVM includes only four derived types —
pointer, array, structure, and function [19]. High-level data
types are represented as a combination of these four types.
These four derived types are used in complicated language-
independent analyses and optimizations. The register of LLVM
IRs is already set according to an instruction and is in static
single assignment (SSA) form to facilitate analyses and
optimization passes.

3. Translation to LLVM IR

When we regenerate the Dalvik bytecode from LLVM IR

1004 Jeehong Kim et al. ETRI Journal, Volume 37, Number 5, October 2015
http://dx.doi.org/10.4218/etrij.15.0114.0036

Fig. 2. LLVM IR code of motivating example.

1: define i32 @loopinvariant (i32 %arg0, i32 %arg1) {

2: bb: %0 = call i32 @llvm.dalvik.newArray (i32 100, i32 4)

3: br label %bb15

4:

5: bb15:

6: %11.0 = phi i32 [0, %bb], [%2, %bb4]

7: %10.0 = phi i32 [0, %bb], [%5, %bb4]

8: %1 = icmp uge i32 %10.0, %arg0

9: br i1 %1, label %bb5, label %bb4

10:

11: bb4:

12: %2 = add i32 %arg0, %arg1 Redundant computation in loop

13: %3 = mul i32 %l0.0, 6

14: %4 = add i32 %3, %2

15: call void @llvm.dalvik.aput (i32 %4, i32 %0, i32 %10.0)

16: %5 = add i32 %10.0, 1

17: br label %bb15

18:

19: bb5:

20: %6 = add i32 %arg0, –1

21: %7 = call i32 @llvm.dalvik.aget (i32 %0, i32 %6)

22: %8 = add i32 %7, %11.0

23: ret i32 %8

code, we should preserve the high-level language features of
the original Dalvik bytecode. The beginning portion of Dalvik
bytecode is composed of several constant pool sections,
including string ids, type ids, method ids, class definitions, and
word data. These sections represent strings; types of variables
and methods; methods of classes; class information; and data in
classes. To handle the impedance mismatch between Dalvik
bytecode and LLVM IR code described in Section II-2, we
annotate these high-level language features of the Dalvik
bytecode into LLVM IR code using metadata, and create the
intrinsic functions for the Dalvik instructions, which do not
have any direct correspondence in LLVM IR code [24]–[26].
In the LLVM, intrinsic functions are used to add new
fundamental types and new instructions to extend LLVM IR
[27]. In our system, since an LLVM transformation pass does
not change the metadata, an intrinsic function maintains the
metadata for high-level language features, such as class
information and inheritance, during optimization and code
regeneration.

Our system first parses the Dalvik bytecode and then
generates metadata from the constant pool sections. The
metadata of a method is described as a sequence of the method
name, access flag, return type, parameter count, and parameter
type. If a Dalvik bytecode instruction has a corresponding
LLVM IR instruction, then our system generates the LLVM IR
instruction as shown in Fig. 2 for the Dalvik bytecode
instruction shown in Fig. 1(c). Otherwise, it generates an
intrinsic function [27] — the name of which is the same as the
Dalvik bytecode instruction. For example, since “aput”

1: llvm.dvk.strings = !{!0, !1, !2, !3, !4, !5, !6, !7, !8, !9, !10, !11}

2: llvm.dvk.types = !{!1, !3, !4, !6, !8, !9}

3: llvm.dvk.class = !{!12}

4: init = !{!13}

5: loopinvariant = !{!14}

13: !0 = metadata !{metadata !“<init>”}

14: !1 = metadata !{metadata !“I”}

15: !2 = metadata !{metadata !“III”}

16: !3 = metadata !{metadata !“LLoopinvariant;”}

17: !4 = metadata !{metadata !“Ljava/lang/Object;”}

18: !5 = metadata !{metadata !“Loopinvariant.java”}

19: !6 = metadata !{metadata !“V”}

20: !7 = metadata !{metadata !“VL”}

21: !8 = metadata !{metadata !“[I”]

22: !9 = metadata !{metadata !“[Ljava/lang/String;”]

23: !10 = metadata !{metadata !“loopinvariant”}

24: !11 = metadata !{metadata !“main”}

25: !12 = metadata !{metadata !“LLoopinvariant;”, metadata !“Ljava/lang/Object;”, i32

1}

26: !13 = metadata !{metadata !“<init>,” i32 65537, i32 3, i32 0}

27: !14 = metadata !

{metadata !“loopinvariant,” i32 9, i32 0, i32 2, i32 0, i32 0}

Fig. 3. Metadata in LLVM IR code.

…

instruction at Line 10 in Fig. 1(c), which stores a register value
to a given array element with given array index, has no
corresponding LLVM IR instruction, an intrinsic function
“void @llvm.Dalvik.aput” underlined at Line 15 in Fig. 2 is
generated. In LLVM optimization passes, an intrinsic function
is treated as an unanalyzable function. In this way, 43 Dalvik
bytecode instructions among 256 bytecode instructions are
translated to intrinsic functions: for example, “aput, aget, sput,
sget,” and so on.

Figure 3 shows the metadata translated from the Dalvik
bytecode shown in Fig. 1(c) through the front-end compiler of
our system. Each metadata in a dotted box includes variables
and methods in a class as follows:
■ Types of string, variables, and methods in the Dalvik bytecode

(from “metadata !0” at Line 13 to “metadata !11” at Line 24).
■ Class information (“metadata !12” at Line 25).
■ Methods information (from “metadata !13” at Line 26 and

“metadata !14” at Line 27).
For example, in “metadata !14” at Line 27 of Fig. 3, the first

argument, “loopinvariant,” describes the method name. The
second argument is an access flag of the “loopinvariant”
method, where “i32 9” represents public static method whose
type is determined in the DVM library. The third argument is
the return type of the method, where “i32 0” indicates the first
argument (!1) of “llvm.dvk.types” at Line 2, and the metadata
“I” at Line 14 (!1) refers to an integer type. The fourth
argument is the number of parameters, and the fifth and sixth
arguments are the presented parameter types. Since the fourth,
fifth, and sixth arguments are “i32 2,” “i32 0,” and “i32 0,”

ETRI Journal, Volume 37, Number 5, October 2015 Jeehong Kim et al. 1005
http://dx.doi.org/10.4218/etrij.15.0114.0036

respectively, the number of parameters is two, and the type of
the two parameters is integer, as described above.

4. Optimization and Generation of Dalvik Bytecode

An LLVM static optimizer [28] optimizes the LLVM IR
code generated by our front-end compiler, in both a target-
dependent way and a target-independent way.

Figure 4 illustrates how our static Dalvik bytecode
optimization improves the code quality of Android applications,
where the gray shaded boxes indicate our optimization
components. The “Dalvik bytecode instruction selection”
phase optimizes LLVM IR code using Dalvik bytecode
descriptions to select instructions and operands target-
dependently [29]–[30]. Dalvik bytecode descriptions consist of
language characteristics for Dalvik bytecodes, including
instruction and register information. In the “Dalvik bytecode
instruction selection” phase, LLVM IR code is translated into
an initial directed acyclic graph (DAG), in which the nodes
specify the operations and operands of each instruction. Using
an initial DAG helps LLVM to optimize the Dalvik bytecodes
target-independently on a very low level. The “Optimize
DAG” phase simplifies the initial DAG by eliminating
redundancies exposed by the previous step, before and after the
“Legalize DAG” phase. The “Legalize DAG” phase
transforms the DAG to eliminate the types and operations that
are not supported by the Dalvik VM. The “Instruction
selection” phase for the DAG linearizes DAG into Dalvik
bytecode instructions by using pattern matching. Then, the

Fig. 4. Static Dalvik bytecode optimization.

Dalvik bytecode
to LLVM IR

Front-end

Dalvik bytecode
description Dalvik

bytecode

Build initial DAG

Optimize DAG

Legalize DAG

Optimize DAG

Legalize DAG

Optimize DAG

Dalvik
bytecode

instruction
selection

Instruction selection for
DAG

Target-independent
DAG to target

instruction

SSA-based Dalvik
bytecode optimizations

Dalvik bytecode
register allocation

Late Dalvik bytecode
optimizations

Dalvik bytecode printer

Optimized Dalvik
byteocede

 Pre-RA tail duplication
 PHI optimization
 Machine LICM, CSE, DCE
 Peephole optimization
 Etc.

 Peephole optimization
 Branch folding and simplification
 Tail duplication
 Reg-reg copy propagation
 Post RA scheduler
 Etc.

Dalvik bytecode is optimized using SSA-based optimization,
including loop-invariant code motion, dead code elimination,
common subexpression elimination, and peephole
optimization. In the “Register allocation” stage, the number of

 1: define i32 @loopinvariant (i32 %arg0, i32 %arg1) {
2: bb:
3: %0 = call i32 @llvm.dalvik.newArray (i32 100, i32 4)
4: %1 = add i32 %arg0, %arg1  Hoisting redundant computation out of the

loop
5: br label %bb15
6:
7: bb15:
8: %10.0 = phi i32 [0, %bb], [%5, %bb4]
9: %2 = icmp uge i32 %10.0, %arg0
10: br i1 %2, label %bb5, label %bb4
11:
12: bb4:
13: %3 = mul i32 %10.0, 6
14: %4 = add i32 %3, %1
15: call void @llvm.dalvik.aput (i32 %4, i32 %0, i32 %10.0)
16: %5 = add i32 %10.0, 1
17: br label %bb15
18:
19: bb5:
20: %6 = add i32 %arg0, –1
21: %7 = call i32 @llvm.dalvik.aget (i32 %0, i32 %6)
22: %8 = add i32 %7, %1
23: ret i32 %8
24: }

Fig. 5. Optimized LLVM IR code of motivating example.

Fig. 6. Optimized Dalvik bytecode of motivating example.

1: .method public static loopinvariant (II)I

2: .registers 6

3: .parameter

4: .parameter

5:

6: .prologue

7: const/4 v0, 0x0

8: const/16 v1, 0x64

9: new-array v2, v1, [I

10: move v1, v0

11: add-int v1, p0, p1  Hoisting redundant computation out of the loop

12:

13: :goto_6

14: if-ge v0, p0, :cond_12

15: mul-int/lit8 v3, v0, 0x6

16: add-int/2addr v3, v1

17: aput v3, v2, v0

18: add-int/lit8 v0, v0, 0x1

19: goto :goto_6

20:

21: :cond_12

22: add-int/lit8 v0, p0, –0x1

23: aget v0, v2, v0

24: add-int/2addr v0, v1

25: return v0

26: .end method

27: .method public static

1006 Jeehong Kim et al. ETRI Journal, Volume 37, Number 5, October 2015
http://dx.doi.org/10.4218/etrij.15.0114.0036

virtual registers in SSA form is decreased to 15, which is the
number of general-purpose registers in our target architecture,
ARMv7. Subsequently, Dalvik bytecodes are optimized by
final Dalvik bytecode-dependent optimization including
peephole optimization. Finally, the optimized Dalvik bytecodes
are printed out using the LLVM MC infrastructure.

Figure 5 shows the optimized LLVM IR code generated by
our static optimization. In Fig. 5, the redundant computation at
Line 4, “%1 = add i32 %arg0, %arg1,” shown in the dark gray
box was removed from the loop in the dotted box. Finally, the
back-end of our system generates the optimized Dalvik
bytecode, where the summation instruction is removed from
the loop (as shown in Fig. 6).

As mentioned above, our approach finally generates
optimized Dalvik bytecode before it is executed in DVM. After
starting the execution of the Dalvik bytecode, a typical DVM
JIT compiler handles the reference types and garbage
collection. Because of our aggressive optimization, our
approach can give positive effects on dealing with these
operations (reference types and garbage collection) during
executing the Dalvik bytecode.

III. Evaluation

To evaluate our static Dalvik bytecode optimization system,
we first ran four micro-benchmarks and two real benchmarks,
which were downloaded from the Google application market
(Benchmark Pi [31], EmbeddedCaffeineMark 3.0 [32]). We
compared the scores of the benchmarks in four configurations
— baseline, JIT, baseline with static optimization, and JIT
with static optimization. In the baseline configuration, DVM
performs only interpretation without either JIT or our static
optimization. We use the baseline configuration as the baseline
for measuring normalized performance improvement of other
schemes. In the JIT configuration, DVM performs both the
interpretation and JIT compilation. In the configurations with
static optimization, the Dalvik bytecodes are statically
optimized before running on DVM. In addition, we compare
the performance of our static optimization scheme with other
studies [10], [15]. All experiments are performed on a reference
phone, Galaxy Nexus [33], running Android 4.0.1, with
1.2 GHz TI OMAP 4660 ARM Cortex-A9 dual core and 1 GB
memory. In addition, to evaluate our system on another
Android device, we performed EmbeddedCaffeineMark 3.0 on
Galaxy S4, running Android 4.4.2, with 2.2 GHz Qualcomm
Snapdragon 800 Krait 400 quad core and 2GB memory.

1. Performance of Static Dalvik Bytecode Optimization

We developed four micro benchmarks — loop-invariant

Fig. 7. Normalized performance improvement of micro benchmarks.

90

110

130

150

170

190

210

Loop
invariant

Loop
splitting

Loop
unswitching

Partial
redundancy
elimination

Average

Baseline JIT
Baseline with static optimization JIT with static optimization

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (
%

)
(e

xe
cu

ti
on

 s
pe

ed
)

Fig. 8. Normalized performance improvement of Benchmark Pi.

90

110

130

150

170

190

210

230

Baseline JIT Baseline with
static

optimization

JIT with static
optimization

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (
%

)
(e

xe
cu

ti
on

 s
pe

ed
)

code motion (Fig. 1(a)), loop splitting, loop unswitching, and
partial redundancy elimination. Each micro benchmark is a
program that can be optimized by the above-mentioned
optimization techniques. Figure 7 shows that our static
optimization scheme significantly improves performance,
where the performance measure is execution speed for each
micro benchmark. As we expected, the best performance is
achieved by using both the JIT compilation and static
optimization. The average performance improvement in the
micro benchmarks is 64%.

For real benchmarks, we evaluated EmbeddedCaffeinemark
3.0 [32] and Benchmark Pi [31]. These are popularly used
benchmarks for testing the performance of DVM JIT [8], [10].
First, Benchmark Pi calculates the ratio of the circumference of
a circle to its diameter. Figure 8 shows the normalized
performance improvement of Benchmark Pi under the four
configurations, where the performance measure is execution
speed. The baseline with static optimization outperforms the
baseline by 1.81 times and the JIT with static optimization
outperforms the baseline by 2.13 times. The experimental
results clearly show that our system significantly improves the
performance of Android applications by statically optimizing
the Dalvik bytecodes.

Second, EmbeddedCaffeineMark 3.0 is used for our evaluation.

ETRI Journal, Volume 37, Number 5, October 2015 Jeehong Kim et al. 1007
http://dx.doi.org/10.4218/etrij.15.0114.0036

Fig. 9. EmbeddedCaffeineMark 3.0 scores on Galaxy Nexus.

1,000

10,000

100,000

Sieve Logic Loop String Float Method

Baseline JIT
Baseline with static optimization JIT with static optimization

S
co

re

Table 2. Average execution time of each benchmark.

Baseline

(s)
JIT
(s)

Baseline with
static

optimization (s)

JIT with static
optimization

(s)

Loop invariant 7.65 5.24 6.28 4.02

Loop splitting 10.98 8.54 8.27 6.53

Loop unswitching 9.87 7.45 8.04 5.06

Partial redundancy
elimination

6.16 6.01 6.07 6.01

Benchmark Pi 0.66 0.41 0.34 0.29

EmbeddedCaffeineMark
3.0

 23.80

It is a subset of the complete CaffeineMark suite, including
Sieve, Loop, Logic, Method, Float, and String [32]. First, Sieve
is the classic Sieve of Eratosthenes (for prime numbers). Loop
performs sorting and sequence generation for measuring the
compiler optimization of loops. Logic measures the execution
speed of decision-making instructions in a virtual machine.
Method performs recursive function calls on a virtual machine.
Float simulates a 3D rotation of objects around a point. Finally,
String performs string concatenation, which is the operation of
joining character strings end-to-end. The score is the number of
executed instructions per second. Figure 9 shows the scores of
EmbeddedCaffeineMark 3.0 under the four configurations in a
logarithmic scale. As expected, the benchmark scores are the
best when we use both the JIT compilation and static
optimization; normalized performance acceleration relative to
the baseline is increased by up to 6.08 times. Also, interpreting
with static optimization achieves performance improvement by
up to 5.22 times on average. Therefore, when an application is
statically optimized, the JIT-compiled performance is 4.34
times faster on average than that of no static optimization.
Especially, in the case of the Logic benchmark in Fig. 9, we
can observe that our static optimization system, simultaneously

Fig. 10. EmbeddedCaffeineMark 3.0 scores on Galaxy S4.

1,000

10,000

100,000

Sieve Logic Loop String Float Method

Baseline JIT
Baseline with static optimization JIT with static optimization

S
co

re

with DVM JIT, improved the performance by about 10 times
because of their efforts for more advanced optimization.

Table 2 shows the average execution time of each
benchmark, while each benchmark was run 10 times.
EmbeddedCaffeineMark 3.0 cannot be measured individually,
so the whole execution time of the benchmark is presented.
In our experiment, each test is run for approximately the same
length of time.

To ensure that our experimental results are impartial to
diverse hardware features, performed, another experiment with
EmbeddedCaffineMark 3.0 on Galaxy S4, and showed the
results in Fig. 10. In Fig. 10, as expected, similar results to
those of Fig. 9 were achieved, and we can see that the
benchmark scores are also the best when we use both the JIT
compilation and static optimization; normalized performance
acceleration relative to the baseline is increased by up to 3.17
times on average. Moreover, interpreting with static
optimization achieves performance improvement by up to 2.87
times on average. Therefore, when an application is statically
optimized, the JIT-compiled performance is 2.94 times faster
on average than that of no static optimization. This
experimental result clearly shows that our system can improve
the performance of Android applications regardless of the type
of hardware.

2. Comparison with Other Optimization Schemes

We compared the performance of our static Dalvik bytecode
optimization scheme with the Java bytecode level optimizer
[17] and another complementary compilation scheme for
Android applications [10].

Soot [17] is a Java optimization framework developed at
McGill University. It can be used to optimize and analyze class
files at a Java bytecode level [34]. For fair comparison, we
statically optimized Java bytecodes of benchmarks, such as
Benchmark Pi and EmbeddedCaffeineMark 3.0, by using the
latest version of Soot with highest optimization options,
enabling intra-procedural and whole program optimization.

1008 Jeehong Kim et al. ETRI Journal, Volume 37, Number 5, October 2015
http://dx.doi.org/10.4218/etrij.15.0114.0036

Fig. 11. Normalized performance improvement of Benchmark Pi
for Soot.

90

115

140

165

Baseline JIT Baseline with
Soot

JIT with Soot

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (
%

)
(e

xe
cu

ti
on

 s
pe

ed
)

Fig. 12. Normalized performance improvement of EmbeddedCaffeine
Mark 3.0 for Soot.

50

90

130

170

210

250

Sieve Logic Loop String Float Method

Baseline JIT Baseline with Soot JIT with Soot

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (
%

)
(s

co
re

)

The optimized Java bytecodes are subsequently transformed to
Dalvik bytecodes and run on the same machine as that
described in Section III-1. We measured the score for the
benchmarks and used DVM interpretation as the baseline,
measuring the normalized performance improvement.

Figure 11 shows that normalized performance of Benchmark
Pi for Soot is improved, where we used execution speed as
a performance measure. We observe that the JIT-compiled
performance is 44% faster than the baseline performance.
Figure 12 also shows that normalized performance of
EmbeddedCaffeineMark 3.0 for Soot is improved and we can
observe that the JIT-compiled performance is 48% faster than
the baseline performance on average. As shown in Figs. 11 and
12, Soot does not outperform DVM dramatically, because it
performs only simple optimizations; that is, copy propagation,
constant propagation, constant folding, dead assignment
elimination, unconditional branch folding, unused local
elimination, load store optimization, and peephole optimization.

Icing [10] is a well-known complementary compilation
technique for DVM. Unfortunately, we could not directly
compare our results with those of Icing, because the Icing
project is not accessible to the general public. Instead, we
indirectly measured the performance of our optimization

scheme against that of Icing by referring to the experimental
results in [10]. We observe that our optimization scheme
outperforms Icing for the same benchmark applications;
whereas, Icing outperforms Dalvik JIT by 2.83 times, our
system outperforms Dalvik JIT by 4.34 times.

IV. Related Work

Improving the performance of Android applications has
received a lot of interest. Here, we discuss some studies that are
most related to our work.

1. Complementary Compilation with DVM

Icing [10] converts hot methods in the Dalvik bytecode to C
codes using the GCC compiler. The translated native codes are
executed by DVM through calling the Java Native Interface.
Lim and others [11] generate a hybrid DEX file that includes
selective ahead-of-time compilation information based on the
profiling information of hot methods, and then compile and
execute the hybrid DEX file. BLOAT [16] eliminates common
access expressions by performing partial redundancy
elimination based on type-based alias analysis. It employs
optimization between java class files at a bytecode-to-bytecode
level. However, since BLOAT mainly focuses on exploiting
intra-procedural analysis and optimization, the performance
gain may be limited. As shown in Section III, the compilation
with our static optimization and DVM JIT surpassed that of
previous studies.

2. Modification in DVM

In Swift [4], the authors propose a lightweight JIT compiler
for the ARM architecture, which is among the most popular on
the Android platform. They use a simplified register allocation
process for JIT based on the fact that in most Java methods
eleven physical registers in the ARM core are sufficient to
fulfill the virtual registers in DVM. Absar and Shekhar [12]
improve the array bounds check optimization algorithm in
DVM JIT so that it can handle indices such as affine functions
of iterators, loop invariants, and literals. Modifying DVM
causes maintenance problems since DVM is under active
development. AccelDroid [13] is the HW/SW co-designed
system for accelerating Android applications. To boost the
power and performance efficiency of Android applications, a
Dalvik bytecode–aware processor is implemented by co-
designing hardware and software; this is so that Dalvik
bytecodes can be executed directly using dynamic binary
translation on the special processor. ART runtime [9] performs
ahead-of-time compilation from Dalvik bytecode to binary

ETRI Journal, Volume 37, Number 5, October 2015 Jeehong Kim et al. 1009
http://dx.doi.org/10.4218/etrij.15.0114.0036

during an application installation, and then the generated
machine code is executed when the application is run.
However, since ART runtime is still an ongoing project, the
speed-up of performance is not dramatic — under 1.8 times
on EmbeddedCaffeinemark 3.0 [9]. In conclusion, our static
optimization can achieve higher performance of applications
with less engineering overhead than those of DVM
modification techniques.

V. Conclusion

In this paper, we proposed a static Dalvik bytecode
optimization system for the performance improvement of
Android applications. We found that Android applications,
which are compiled by the Java compiler and transformed by
the Dx tool, still offer considerable opportunities for further
optimization with static compilation. We resolve the
performance shortage by adopting static optimization with
DVM JIT as a complementary compilation technique of DVM.
We exploited a mature compiler infrastructure, LLVM, to
enhance the code quality for Android applications. Moreover,
we proposed techniques to close the gap between the high-
level Dalvik bytecode and the low-level LLVM IR code, and
to optimize the LLVM IR code conforming to language
information of Dalvik bytecode. Our experimental results show
that the static Dalvik optimization system with DVM JIT
surpasses interpretation in DVM by 6.08 times and DVM JIT
by 4.34 times.

Our optimization framework can also be applied for Android
application executing in ART runtime. As mentioned in
Section IV, ART runtime compiles Dalvik bytecode to native
code using an on-device code translation tool in advance, and
then directly executes the precompiled native code to boost the
execution performance at runtime. However, this scheme
inevitably requires considerable installation time and more
memory space than DVM. We expect that the installation time
and the amount of memory usage can be reduced by compiling
the optimized Dalvik bytecode, which is generated by our
framework, at code translation process in ART runtime. In
addition, we believe that our aggressive optimization scheme
can also give positive effects on code optimization in ART
runtime, which remains as a future work.

References

[1] M.J. Cho et al., “AndroScope: An Insightful Performance

Analyzer for All Software Layers of the Android-Based

Systems,” ETRI J., vol. 35, no. 2, Apr. 2013, pp. 259–269.

[2] D. Bornstein, “Dalvik Virtual Machine Internals,” presented at the

Google I/O Developer Conf., San Francisco, CA, USA, 2008.

[3] Y. Shi et al., “Virtual Machine Showdown: Stack versus

Registers,” ACM Trans. Archit. Code Optimization, vol. 4, no. 4,

Jan. 2008, pp. 1–36.

[4] Y. Zhang et al., “Swift: A Register-Based JIT Compiler for

Embedded JVMs,” Proc. ACM SIGPLAN/SIGOPS Conf. Virtual

Execution Environment, London, UK, Mar. 3–4, 2012, pp. 63–74.

[5] R. Hutcherson, Compiler Optimizations: Can You Count on

Compilers to Optimize Your Java Code, Java World, 2000.

Accessed Jan. 20, 2014. http://www.javaworld.com/javaworld/

jw-03-2000/jw-03-javaperf_4.html?page=1

[6] P. Haggar, Java Bytecode: Understanding Bytecode Makes You a

Better Programmer, IBM Developer Works, 2001. Accessed

Jan. 20, 2014. http://www.ibm.com/developerworks/ibm/library/

it-haggar_bytecode/

[7] K, Venugopal, G. Manjunath, and V. Krishnan, “sEc: A Portable

Interpreter Optimizing Technique for Embedded Java Virtual

Machine,” Java Virtual Mach. Res. Technol. Symp., San

Francisco, CA, USA, Aug. 1–2, 2002, pp. 127–138.

[8] B. Cheng and B. Buzbee, “A JIT Compiler for Android’s Dalvik

VM,” presented at the Google I/O Developer Conf., San

Francisco, CA, USA, 2010.

[9] B. Carlstrom, A. Ghuloum, and I. Rogers, “The ART Runtime,”

presented at the Google I/O Developer Conf., San Francisco, CA,

USA, 2014.

[10] C.-S. Wang et al., “A Method-Based Ahead-of-Time Compiler

for Android Applications,” Proc. Int. Conf. Compiler, Archit.

Synthesis Embedded Syst., Taipei, Taiwan, Oct. 9–14, 2011, pp.

15–24.

[11] Y.-K. Lim et al., “A Selective Ahead-of-Time Compiler on

Android Device,” Int. Conf. Inf. Sci. Appl., Suwon, Rep. of Korea,

May 23–25, 2012, pp. 1–6.

[12] J. Absar and D. Shekhar, “Eliminating Partially-Redundant Array-

Bounds Check in the Android Dalvik JIT Compiler,” Proc. Int.

Conf. Principles Practice Programming Java, Kongens Lyngby,

Denmark, Aug. 24–26, 2011, pp. 121–128.

[13] C. Wang, Y. Wu, and M. Cintra, “Acceldroid: Co-designed

Acceleration of Android Bytecode,” IEEE/ACM Int. Symp. Code

Generation Optimization, Shenzhen, China, Feb. 23–27, 2013, pp.

1–10.

[14] GCJ - The GNU Compiler for the Java Programming Language.

Accessed Jan. 20, 2014. http://gcc.gnu.org/java/

[15] DragonEgg - Using LLVM as a GCC Backend. Accessed Jan. 20,

2014. http://dragonegg.llvm.org/

[16] A.L. Hosking et al., “Partial Redundancy Elimination for Access

Path Expressions,” Software: Practice and Experience, vol. 31,

no. 6, May 2001, pp. 577–600.

[17] R. Vallee-Rai et al., “Soot: A Java Bytecode Optimization

Framework,” Conf. Center Adv. Studies Collaborative Res.,

Toronto, Canada, 2010, pp. 214–224.

[18] N. Geoffray et al., “VMKit: A Substrate for Managed Runtime

1010 Jeehong Kim et al. ETRI Journal, Volume 37, Number 5, October 2015
http://dx.doi.org/10.4218/etrij.15.0114.0036

Environments,” Proc. ACM SIGPLAN/SIGOPS Conf. Virtual

Execution Environment, Pittsburgh, PA, USA, Mar. 17–19, 2010,

pp. 51–62.

[19] C. Lattner and V. Adve, “LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation,” Int. Symp. Code

Generation Optimization, Palo Alto, CA, USA, Mar. 20–24, 2004,

pp. 75–86.

[20] The LLVM Compiler Infrastructure. Accessed Jan. 20, 2014.

http://llvm.org/

[21] GCC- The GNU Compiler Collection. Accessed Jan. 20, 2014.

http://gcc.gnu.org/

[22] Google Android Dx Tool. Accessed Jan. 20, 2014. http://wing-

linux.sourceforge.net/guide/developing/tools/othertools.html

[23] Security Engineering Research Group, “Analysis of Dalvik

Virtual Machine and Class Path Library,” Institute of

Management Sciences, Peshawar, Pakistan, Tech. Rep., Nov.

2009.

[24] LLVM Language Reference Manual. Accessed Jan. 20, 2014.

http://llvm.org/docs/LangRef.html

[25] Extensible Metadata in LLVM IR. Accessed Jan. 20, 2014.

http://blog.llvm.org/2010/04/extensible-metadata-in-llvm-ir.html

[26] J. Holewinski, “PTX Back-End: GPU Programming with

LLVM,” presented at the LLVM Developer’s Meeting, San Jose,

CA, USA, Nov. 8, 2011.

[27] Extending LLVM: Adding Instructions, Intrinsics, Types, etc.

Accessed Jan. 20, 2014. http://llvm.org/docs/ExtendingLLVM.

html

[28] LLVM’s Analysis and Transform Passes. Accessed Jan. 20, 2014.

http://llvm.org/docs/Passes.html

[29] The LLVM Target-Independent Code Generator. Accessed Jan.

20, 2014. http://www.llvm.org/docs/CodeGenerator.html

[30] A. Korobeynikov, “Tutorial: Building a Backend in 24 Hours,”

presented at the LLVM Developer’s Meeting, Cupertino, CA,

USA, 2009.

[31] Benchmark Pi – The Android Benchmarking Tool. Accessed Jan.

20, 2014. http://androidbenchmark.com/

[32] The Embedded CaffeineMark, Pendragon Software Corporation.

Accessed Jan. 20, 2014. http://www.benchmarkhq.ru/cm30/info.

html

[33] Galaxy Nexus, Samsung Electronics. Accessed Jan. 20, 2014.

http://www.samsung.com/sec/consumer/mobile-phone/mobile-

phone/skt/SHW-M420STSSC.

Jeehong Kim received his BS and MS degrees

in electronic engineering from the Department

of Electronic Engineering, Kwangwoon

University, Seoul, Rep. of Korea, in 2008 and

2010, respectively, and his PhD degree in

computer engineering from the Department of

Mobile Systems Engineering, Sungkyunkwan

University, Suwon, Rep. of Korea, in 2015. Since 2015, he has been

a senior software engineer at Samsung Electronics, Suwon, Rep. of

Korea. His research interests include embedded systems and system

securities.

Inhyeok Kim received his BS and MS degrees

in computer engineering from the Department

of Electrical and Computer Engineering,

Sungkyunkwan University, Suwon, Rep. of

Korea, in 2006 and 2010, respectively, and

since 2010, he has been a PhD student with

the Department of Electrical and Computer

Engineering, Sungkyunkwan University. His research interests include

system software and UI/UX platforms.

Changwoo Min received his BS and MS

degrees in computer science from the

Department of Computer Science, Soongsil

University, Seoul, Rep. of Korea, in 1996 and

1998, respectively, and his PhD degree in

computer engineering from the Department of

Mobile Systems Engineering, Sungkyunkwan

University, Suwon, Rep. of Korea, in 2014. From 1998 to 2005, he

was a research engineer with the Ubiquitous Computing Laboratory of

IBM, Seoul, Rep. of Korea. From 2005 to 2014, he was a principal

software engineer at Samsung Electronics, Suwon, Rep. of Korea.

Since 2014, he has been working as a postdoctoral researcher at

Georgia Institute of Technology, Atlanta, USA. His research interests

include embedded systems, storage systems, and operating systems.

Hyung Kook Jun received his BS degree in

computer engineering from the Department

of Computer Science and Engineering,

Sungkyunkwan University, Suwon, Rep. of

Korea, in 1999 and his MS degree in computer

engineering from the Department of Electrical

and Computer Engineering, Sungkyunkwan

University, in 2001. Since 2001, he has been a senior researcher with

the Cyber-Physical Systems Research Team, ETRI. His research

interests include CPS, embedded systems, communication middleware,

and multimedia systems.

ETRI Journal, Volume 37, Number 5, October 2015 Jeehong Kim et al. 1011
http://dx.doi.org/10.4218/etrij.15.0114.0036

Soo Hyung Lee received his BS and MS

degrees in electronic engineering from the

Department of Electronic Engineering,

Hanyang University, Seoul, Rep. of Korea, in

1991 and 1993, respectively, and his PhD

degree in computer engineering from the

Department of Computer Engineering,

Chungnam National University, Daejeon, Rep. of Korea, in 2012. In

August 1993, he joined the Network Design Laboratory of DACOM

corporation, Seoul, Rep. of Korea. Since October 2000, he has been a

principal member of the engineering staff of the Cyber-Physical

Systems Research Team, ETRI. His research interests include IT

converging systems, CPS, Smart Factory, and network security.

Won-Tae Kim received his BS, MS, and PhD

degrees from the Department of Electronic

Engineering, Hanyang University, Seoul, Rep.

of Korea in 1994, 1996, and 2000, respectively.

He established a venture company named

Rostic Technologies, Inc. in 2001 and worked

as CTO from 2001 to 2005. He joined ETRI in

2005 and has led in Cyber-Physical Systems (CPS) research team, SW

Contents Technology Research Lab, ETRI, since 2010. Now, he is a

professor at Korea University of Technology and Education, Cheonan,

Rep. of Korea. His research interests include CPS, IoT networking, and

Neuromorphic computing.

Young Ik Eom received his BS, MS, and PhD

degrees in computer science from the

Department of Computer Science, Seoul

National University, Rep. of Korea, in 1983,

1985, and 1991, respectively. He was a visiting

scholar with the Department of Information and

Computer Science, University of California,

Irvine, USA, from September 2000 to August 2001. Since 1993, he

has been a professor at Sungkyunkwan University, Suwon, Rep. of

Korea. His research interests include system software, operating

systems, virtualization, cloud systems, and system securities.

	I. Introduction
	II. Static Dalvik Bytecode Optimization
	III. Evaluation
	IV. Related Work
	V. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

