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Abstract—The stream programmingmodel has receivedmuch interest because it naturally exposes task, data, and pipeline parallelism.

However, most prior work has focused on the static scheduling of regular stream programs. Therefore, irregular applications cannot be

handled in static scheduling, and the load imbalance caused by static scheduling faces scalability limitations in many-core systems. In

this paper, we introduce the DANBI programmingmodel, which supports irregular stream programs, and propose dynamic scheduling

techniques. Scheduling irregular stream programs is very challenging, and the load imbalance becomes amajor hurdle to achieving

scalability. Our dynamic load-balancing scheduler exploits producer-consumer relationships already expressed in the DANBI program

to achieve scalability. Moreover, it effectively avoids the thundering-herd problem and dynamically adapts to load imbalance in a

probabilistic manner. It surpasses prior static stream scheduling approaches which are vulnerable to load imbalance and also surpasses

prior dynamic stream scheduling approaches which result in many restrictions on supported program types, on the scope of dynamic

scheduling, and on data ordering preservation. Our experimental results on a 40-core server show that DANBI achieves an almost linear

scalability and outperforms state-of-the-art parallel runtimes by up to 2.8 times.

Index Terms—Stream programming, software pipelining, scheduling, load balancing, irregular programs
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1 INTRODUCTION

THE prevalence of multi-core processors has renewed
interest in parallel programming models and runtimes,

such as StreamIt [1], OpenCL [2], [3], [7] Cilk [4], TBB [5],
and Galois [6]. Also, the application types running on the
processors have been expanded from regular applications
such as scientific simulations to irregular applications such
as computer graphics and big data analysis [6], [7], [8].

Stream programming models, such as StreamIt, have
been extensively studied because they naturally expose
task, data, and pipeline parallelism [1]. In the stream para-
digm, a program is modeled as a graph where computation
kernels communicate through FIFO data queues. Since
each computation kernel accesses only local input and out-
put data queues, it can be effectively applied to various
hardware architectures including shared memory multi-
processors, heterogeneous multiprocessors, GPGPUs, and
distributed computing systems [1], [9], [10], [11, [12], [13],
[14], [15], [16], [17]. Most previous work on stream pro-
gramming models and runtimes has focused on the static
scheduling of regular stream programs where the input/out-
put rates of data queues are statically known at compile
time. Since irregular programs with dynamic input/output
rates and feedback loops cannot be expressed in that
model, its applicability is significantly limited. Moreover,
static scheduling exhibits serious limitations in perfor-
mance scalability and portability to complex hardware
architectures. In static scheduling, the compiler generates

static schedules for each thread based on the work estima-
tion of each kernel, and the runtime iteratively executes the
pre-computed schedules with barrier synchronization.
Therefore, the effectiveness of the static scheduling is basi-
cally determined by the accuracy of the performance esti-
mation, which is difficult or barely possible in many
hardware architectures. For instance, even commodity �86
servers show a 1.5-4.3-fold difference in core-to-core mem-
ory bandwidth [18]. Furthermore, the load imbalance
caused by an inaccurate work estimation or data-depen-
dent control flow significantly deteriorates performance
scalability as the core count increases. In Fig. 1, we show
the scalability of the StreamIt runtime, which is a state-of-
the-art stream system using static scheduling. Two
StreamIt programs were run on a 40-core Intel IA64
NUMA system (see Section 4 for a detailed description of
the environment). In theory, they should be perfectly scal-
able, because the compiler generates perfectly balanced
schedules for each thread by its estimation, and the pro-
grams do not have any data-dependent control flow. How-
ever, in reality, the stall caused by the load imbalance
rapidly increases as the core count increases and thus sig-
nificantly limits the scalability. On 40 cores, communica-
tion-intensive TDE [1] suffers from a larger load imbalance:
the 85.3 percent of the execution time is spent to wait for
the barrier synchronization, so TDE only achieves a
speedup of 7.5 times. Fifield also reported similar results
on an AMD IA64 NUMA system [12].

Although many approaches have been proposed to over-
come the limitations of static scheduling, prior work on
dynamic scheduling is insufficient because of restrictions
on the supported types of stream programs [5], [12], [15],
[19] or because dynamic scheduling is partially performed
[10], [14], [16], or because the expressive power is limited
by giving up the sequential semantics [7], [20]. Although
Flexible Filters [19] and SKIR [12] propose dynamic
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scheduling for StreamIt programs based on a backpressure
mechanism, they support only regular stream programs.
GRAMPS [7], [20] and the flow graph feature in TBB [5]
dynamically schedule irregular stream programs. However,
GRAMPS does not guarantee data ordering between data
parallel kernels, so the expressive power of the data parallel
kernels is limited and additional reordering overhead is
imposed. Also, GRAMPS and the flow graph do not sup-
port peek operation, which is commonly used for sliding
window computation [21]. In distributed stream processing
systems, Elastic Operator [16], Borealis [14], and ACES [15]
adopt dynamic scheduling mechanisms, but, they have lim-
itations. Elastic Operator [16] handles only the degree of
data parallelism in a stateless component. Borealis [14]
assumes all components are stateless. ACES [15] does not
support cyclic pipelines.

In this paper, we introduce the DANBI programming
model, which supports irregular stream programs, and its
runtime design including dynamic scheduling mechanisms.
We make the following specific contributions:

� We introduce the DANBI parallel programming
model which extends the stream programming
model to support irregular stream programs. DANBI
allows a cyclic graph with feedback queues and the
dynamic input/output rates of data queues. In con-
trast to GRAMPS [7], [20], a DANBI program pre-
serves its sequential semantics even under parallel
execution. Data ordering across multiple queues in a
kernel can be optionally enforced by our ticket syn-
chronization mechanism. With the combination of the
feedback queues and ticket synchronization, we can
effectively describe complex irregular programs,
such as recursive algorithms.

� Since the DANBI program graph contains all the
producer-consumer relationships, there are many
opportunities to schedule more efficiently. To this
end, our scheduler dynamically performs load bal-
ancing based on the occupancy of the input and out-
put queues, so naturally exploits the producer-
consumer relationships. Although such a scheduling
scheme could help to improve scalability, naive solu-
tions will face limitations on scalability. We found
that exploiting the proper degree of pipeline parallel-
ism over data parallelism is critical to achieve high
scalability. Excessive data parallelism could result
in the thundering-herd problem, in which the gain
from parallel execution can be overshadowed by
the cost of communication and synchronization
among contending threads. To effectively avoid the

thundering-herd problem and dynamically adapt to
load imbalance, we propose two probabilistic sched-
uling techniques, Probabilistic Speculative Schedul-
ing (PSS) and Probabilistic Random Scheduling
(PRS) (see Section 3.1). In contrast to prior work, our
scheduling mechanism can fully support irregular
stream programs without any restrictions and can
dynamically adjust task, data, and pipeline parallel-
ism simultaneously. While our scheduling mecha-
nism is developed for the DANBI programming
model, the techniques can be applied to other stream
programming models, such as StreamIt.

� To achieve high scalability, frequently accessed data
structures also need to be scalable. In the DANBI
runtime, our ticket synchronization mechanism
could be a performance bottleneck since competing
threads need to check their tickets for ordering.
Indeed, in cache-coherent many-core systems, fre-
quent invalidation of the shared cacheline results in
the performance collapse of an entire system [22],
[23]. We present a scalable design of ticket synchro-
nization, which minimizes the invalidation of shared
cachelines.

� We developed the DANBI benchmark suite with
seven applications ported from StreamIt, Cilk, and
OpenCL. Also, we evaluated the performance and
scalability of the DANBI runtime and obtained an
almost linearly scalable performance on a 40-core
IA64 system. In comparison with other parallel run-
times, the DANBI runtime outperforms the state-of-
the-art parallel runtimes up to 2.8 times on 40 cores.

The remainder of this paper is organized as follows.
Section 2 introduces the DANBI programming model,
and Section 3 elaborates on the design of the DANBI run-
time for many-core systems. Section 4 shows the exten-
sive evaluation results. Related work is described in
Section 5. Finally, in Section 6, we conclude the paper.

2 THE DANBI PROGRAMMING MODEL

The DANBI programming model extends state-of-the-art
stream programming models [1], [7], [20] to support irregu-
lar stream applications. A DANBI program is represented
as a graph of independent computation kernels communi-
cating through unidirectional data queues. The graph can
be cyclic with feedback data queues. It is not necessary to
know the input/output rates of the data queues at the com-
pile time. As described in Table 1, seven core APIs are pro-
vided for writing a computation kernel. In the rest of this
section, we explain each element of the DANBI program-
ming model in detail.

Computation kernel. The computation kernel is a user-
defined function that operates on zero or more input
queues, output queues, and read-only buffers. It is explicitly
defined as a sequential or parallel kernel. A sequential kernel
must run serially with a thread, whereas multiple threads
can concurrently execute a parallel kernel for data parallel-
ism. Therefore, all parallel kernels should be stateless. Addi-
tionally, if a kernel is annotated as a starting kernel, it is
executed at the beginning. A DANBI program has at least

Fig. 1. Scalability of StreamIt programs.
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one starting kernel. The input/output rates of the data
queues can dynamically vary at runtime.

Data queue. The data queue is a unidirectional communi-
cation channel between kernels, which is modeled as an
array-based FIFO queue with push, pop, and peek opera-
tions. Concurrent producers and consumers for a parallel
kernel can work on the same data queue. While the tradi-
tional stream models statically determine the degree of data
parallelism by using split/join, which replicates data
queues and kernels [1], [9], [11], [12], our concurrent data
queue approach enables the DANBI runtime to dynami-
cally determine the level of data parallelism by adjusting
the number of running threads for a kernel. To work on
multiple queue items at the same time with efficiency, a
part of the data queue is first reserved for exclusive access,
and then committed to notify when exclusive use ends. In
the reserve-commit semantics, peek and pop operations
are combined in one operation, peek_pop. From an appli-
cation point of view, all operations are blocking ones.
Reserve operations are blocked when there are not enough
elements or rooms. In other words, when there are enough
elements or rooms, concurrent reserve operations succeed
regardless of whether a previous reserve operation is com-
mitted or not. Even under concurrent reserve operations,
commit operations are totally ordered according to the
reserve order. A commit operation is blocked when the pre-
vious reserve operation is not yet committed. Computation
can be interleaved with reserve and commit operations.
When a queue operation is blocked, the DANBI runtime
schedules other threads. The details of our scheduler will
be explained in Section 3.1.

Ticket synchronization. FIFO ordering on queues between
sequential kernels is maintained by default. However,
queues with parallel kernels are not automatically ordered,
since a parallel kernel can execute out of order. Essentially,
there are two approaches to deal with data ordering for par-
allel kernels: total ordering by using split/join [1], [9], [11],
[12], and no ordering [20], [24], [25]. The former is not ade-
quate for irregular workloads because the input/output
rates should be statically known for a joiner to deterministi-
cally merge the split data queues. Since the latter does not
preserve the sequential semantics, it limits the expressive
power of the data parallel kernel and imposes additional
sorting overhead at the last sequential kernel.

To support ordering-dependent streaming applications,
we introduce a ticket synchronization mechanism which

enforces the ordering of the queue operations for a parallel
kernel. The key idea is analogous to serving customers in a
bank: a customer first receives a ticket from a ticket issuer,
and then waits until the teller’s serving ticket number
matches the issued ticket number. In the DANBI program-
ming model, a ticket is the number which represents the
order. The ticket issuer issues a ticket whose value starts
from zero and increases by one at each issuance. The ticket
server manages a serving ticket number which starts from
zero and increases by one after each service. It provides ser-
vice only when the requester’s ticket number is the same as
the serving ticket number. Otherwise, the requester is
blocked, and the DANBI runtime schedules other threads.
Since the initial issuing ticket number and the initial serving
ticket number are the same, the first ticket issued is served
first. After the issuing and serving ticket numbers are incre-
mented, the second ticket issued is served. Thus, the serving
order is totally ordered by the issuing order. A data queue is
optionally defined to issue or serve a ticket in the reserve
operations. To serve a ticket, the source of the issued ticket
is also described. Since an issued ticket can be consumed by
multiple queues, we can enforce data ordering across multi-
ple queues. When multiple queues are conditionally
accessed with an issued ticket, the serving ticket number
of the unaccessed queue needs to be increased by using
consume_ticket() in Table 1 to keep all relevant ticket
numbers synchronized.

Read-only buffer. This buffer is an array of pre-computed
values, which can be read from a computation kernel and is
accessible via the index.

Fig. 2 presents merge sort, an example of a DANBI pro-
gram graph, where the recursive concurrent merge opera-
tion is represented by a backward feedback data queue.
Sequential Sort kernel sequentially sorts unsorted data
from Q1 in the unit of a chunk, the size of which is passed
via Q2. A sorted chunk in Q4 is further divided into two or
more sub-chunks by Split kernel for parallel merge opera-
tion in Merge kernel. The size of each sub-chunk to be
chopped is passed via Q3. As a result of Split kernel,
chopped sub-chunks and their sizes are passed via Q5 and
Q6, respectively. Merge kernel merges two chunks in paral-
lel by merging sub-chunks from the two chunks in parallel.
If further merge operations are needed, the merged chunk
is pushed to the Split kernel via Q8. Otherwise, the
completely sorted data is pushed to Test Sink via Q7.

Fig. 3 is an example of a DANBI kernel code, which is
defined as a parallel kernel (Line 1). The kernel calculates
simple moving averages for N input elements (lines 16-18)
and generates the average in an output queue (lines 16-18).
The order of push operations is preserved in the order of
pop operations by using the ticket synchronization. A ticket

Fig. 2. A DANBI program: merge sort graph.

TABLE 1
The DANBI Core API

Queue

q_accessor* reserve_push(q, push_num, ticket_-

desc)

void commit_push(q_accessor)

q_accessor* reserve_peek_pop(

q, peek_num, pop_num, ticket_desc)

void commit_peek_pop(q_accessor)

void* get_q_element(q_accessor, i)

void consume_ticket(ticket_desc)

Read-only Buffer

void* get_rob_element(rob, i)
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is issued when popping from the input queue, in_q, and it
is served when pushing to the output queue, out_q (line 4).
The initialization code, which creates kernels, queues, and
read-only buffers and connects them, is omitted due to
space limitations.

In summary, compared to previous work, the DANBI
programming model provides several important features:
(a) supporting dynamic input/output rates, (b) supporting
a cyclic graph with feedback data queues, (c) multiple fan-
in and fan-out of data queues for a kernel, (d) supporting
concurrent producers and consumers working on a data
queue, (e) supporting peek operation, and (f) optionally
enforcing total ordering of data queue operations for a ker-
nel. The combination of the features provides a simple but
powerful mechanism to describe irregular stream programs.
For example, recursive algorithms such as parallel reduc-
tion can be expressed using ticket synchronization and feed-
back queues. Also, data-dependent control flows can be
expressed by two or more ticket-synchronized input
queues: one for control commands and the others for data.

3 THE DANBI RUNTIME FOR MANY-CORE

SYSTEMS

Even though the DANBI programming model is general
and powerful, designing an efficient and scalable runtime
for many-core systems is challenging. The key technical
challenges are as follows:

� Since the DANBI programming model supports
irregular applications with dynamic input/output
rates and feedback loops, there is no statically deter-
minable schedule. Thus, static scheduling
approaches [1], [9], [11] cannot be used. Moreover,
prior work on dynamic streaming is insufficient
because there are many restrictions on supported
program types [5], [12], [15], [19], on the scope of
dynamic scheduling [14], [16], and on reserving data
ordering [7], [20]. Our dynamic load-balancing schedul-
ing mechanism does not rely on static work estima-
tion, which could be inaccurate in modern many-
core architectures, or offline profiling. It makes
scheduling decisions based on queue occupancy and

dynamically adjusts the degree of data parallelism
and pipeline parallelism to avoid the thundering-
herd problem, so improves scalability.

� To achieve scalable speedup in many-core systems,
most concurrently accessed data structures should
also be scalable. In cache-coherent many-core sys-
tems, frequent invalidation of a shared cacheline
results in performance collapse of the entire system
[22], [23]. Therefore, careful design of the contended
data structures is essential. Especially when waiting
for a commit order or ticket serving order, a naive
approach, that repeatedly accesses a shared cache-
line to check the order has significant overhead due
to excessive coherence traffic. Instead, we design our
data queue and ticket synchronization to check sepa-
rated cachelines: a list-based queue is used to check
the commit order similar to MCS list-based queuing
lock [26], and an array accessed by a ticket number
is used to check the ticket order similar in array-
based queuing locks [27], [28]. Since all concurrent
threads read and update the separated cacheline, we
can minimize shared cacheline invalidation and
improve scalability.

In the remainder of this section, we present our
dynamic load balancing scheduling mechanism and the
scalable design of the ticket synchronization. Due to space
limitations, we do not present our queue algorithms in
this paper.

3.1 Dynamic Load-Balancing Scheduling

The DANBI runtime employs a user-level thread mecha-
nism on top of pinned native threads to avoid expensive
mode switching overhead. Hereafter, we use the term thread
for a user-level thread and native thread to explicitly indicate
a native OS thread.

In the DANBI runtime, each native thread runs its own
scheduler with no predetermined schedules. The DANBI
scheduler decides the next runnable kernel and a thread to
run the selected kernel. Scheduling decisions are made
based on how related queues are filled, so producer-con-
sumer relationships in a stream graph are naturally
exploited. We make scheduling decisions at two points:
(1) when a queue operation is blocked with a queue event
such as full, empty or waiting, and (2) when the thread
execution of a parallel kernel is ended. Queue Event-Based
Scheduling (QES) is used in the first case to decide the next
runnable kernel (Section 3.1.2). For the second case, Proba-
bilistic Speculative Scheduling and Probabilistic Random
Scheduling are used to decide whether to keep executing
the same kernel or switch to another (Sections 3.1.3 and
3.1.4). Since PSS uses the producer-consumer relation-
ships, PSS is preferred to PRS. PSS and PRS make schedul-
ing decisions with probabilities, so we switch to a new
kernel based on the probabilities. If both PSS and PRS are
not taken, we keep executing the same kernel. When a
thread is blocked, it is pushed to a per-kernel ready queue,
and it is popped from the queue when re-scheduled. We
implemented the ready queue as a concurrent FIFO queue
to avoid starvation.

Fig. 3. An example of a DANBI parallel kernel.

MIN AND EOM: DYNAMIC SCHEDULING OF IRREGULAR STREAM PROGRAMS TOWARD MANY-CORE SCALABILITY 1597



In the remainder of this section, we will elaborate on our
scheduling mechanism in detail.

3.1.1 Determining the Initial Schedule

At the beginning of the DANBI runtime, each native thread
selects one of the unchosen starting kernels. If there is no
such kernel, non-starting parallel kernels are randomly
selected. After that, each native thread spawns a new user-
level thread for the corresponding kernel and transfers con-
trol to the user-level thread.

3.1.2 Queue Event-Based Scheduling

A queue operation can be blocked when a queue is empty,
full, or waiting for a commit or ticket order. When blocked, our
scheduler selects a next runnable kernel and a thread by
using Queue Event-Based Scheduling (Algorithm 1). When an
input queue is empty, it schedules the producer of the
queue. Similarly, when an output queue is full, it schedules
the consumer of the queue. When it is blocked, while wait-
ing for a commit or a ticket order, another thread of the
same kernel is scheduled. In this case, since a DANBI pro-
gram cannot make progress until the scheduler find a
proper thread in order, we express that the DANBI pro-
gram is stalled.

Thread life-cycle management is incorporated into this
process. The goal is to reduce the memory footprint by
minimizing the number of threads. After selecting a kernel,
it first pops a thread from the per-kernel ready queue.
When the ready queue is empty, it spawns a thread only if
creating another thread does not violate the concurrency
constraint of the kernel. If it cannot spawn a new thread, i.
e., a running thread for the sequential kernel already exists,

we randomly re-select another kernel. When the thread of
a parallel kernel has no successful queue operation, we can
safely delete the thread since it has no side effects.

QES performs dynamic load balancing when a data
queue becomes full or empty with no predetermined sched-
ules. Though it is similar to the back-pressure mechanism
[12], [19], [20], we extend it to incorporate waiting for a com-
mit/ticket order and thread life-cycle management.

3.1.3 Probabilistic Speculative Scheduling

In QES, many threads for a kernel may make the same
scheduling decision if they schedule at roughly the same
time. As a result, QES tends to maximize the degree of data
parallelism as long as the sizes of input/output queues are
available. The high degree of data parallelism, however,
could result in the thundering-herd problem, especially
when queue operations are ordered by ticket synchroniza-
tion. If we exploit pipeline parallelism more aggressively
than data parallelism, we can avoid the thundering-herd
problem and improve scalability by reducing the degree of
data parallelism.

To exploit pipeline parallelism more aggressively, we
introduce Probabilistic Speculative Scheduling. At the end of
the thread execution of a parallel kernel, we decide whether
to continue running the same kernel or not. We probabilisti-
cally schedule another kernel before the corresponding
queue becomes completely empty or full. For brevity,
assume that pipelined parallel kernels Ki�1, Ki, and Kiþ1

are connected by queue Qx and Qxþ1. Assuming an infinite
number of threads are running for the three kernels, the
transition probability between the kernels is determined by
howmuch each queue is filled. Under this condition, incom-
ing transition probabilities from Ki�1 and Kiþ1 to Ki are
defined as follows:

Pi�1;i ¼ Fx;

Piþ1;i ¼ 1� Fxþ1;

where Pm;n is the transition probability from Km to Kn, and
Fx is the fill ratio of Qx ranging from 0 to 1. In the same
way, we can calculate the bidirectional outgoing transition
probabilities ofKi as follows:

Pi;iþ1 ¼ Fxþ1;

Pi;i�1 ¼ 1� Fx:

After balancing out the incoming and outgoing probabili-
ties, the balanced transition probabilities for parallel kernel
Ki are defined as follows:

Pb
i;i�1 ¼ maxðPi;i�1 � Pi�1;i; 0Þ;

P b
i;iþ1 ¼ maxðPi;iþ1 � Piþ1;i; 0Þ;

where Pb
m;n is the balanced transition probability fromKm to

Kn. At the end of the thread execution of a parallel kernel,
we arbitrarily determine the transition direction and take
the transition with the probability of Pb

i;i�1 or Pb
i;iþ1. If we

decide to take the transition to another kernel, we select a
thread in a similar way as in Algorithm 1. Otherwise, we try
Probabilistic Random Scheduling described in Section 3.1.4).
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For a kernel with multiple input and output queues, we take
the emptiest input queue and the fullest output queue.

Since we randomly choose the transition direction, the
actual transition probabilities are as follows:

Pt
i;i�1 ¼ 0:5� Pb

i;i�1;

P t
i;iþ1 ¼ 0:5� Pb

i;iþ1;

P t
i;i ¼ 1� Pb

i;i�1 � Pb
i;iþ1;

where Pt
m;n is the transition probability from Km to Kn taken

by our scheduler. Pt
i;i, the transition probability to itself, is

the probability of no transition. In the steady-state with no
thread transition, Pt

i;i�1 and Pt
i;iþ1 are 0, and Pt

i;i is 1. Under
this situation, Fx and Fxþ1 are 0.5. Therefore, PSS iteratively
attempts to assign threads to kernels for filling all the data
queues in a graph by half. Scheduling to fill queues in half
actually means scheduling to perform double buffering which
is widely used for overlapping communication and compu-
tation. It is arithmetically simple and does not require prede-
termined schedules.

3.1.4 Probabilistic Random Scheduling

PSS works well in most cases, but when the execution time
of a kernel is significantly different due to data-dependent
control flow or fine-grain architecture variability such as
shared cache miss, simultaneous multi-threading (SMT), or
dynamic voltage and frequency scaling (DVFS), the waiting
time for the commit or ticket order could increase signifi-
cantly. To dynamically adapt to such circumstances, we use
a Probabilistic Random Scheduling policy. If a thread waits too
long for a commit or ticket order, we schedule a randomly
selected kernel. The probability, Pr

i , of random scheduling
forKi is defined as follows:

Pr
i ¼ min

Ti

C
; 1

� �
;

where Ti is the number of consecutive waiting events for a
thread, and C is a large constant greater than 1 (10,000 in
our experiments). The probability increases linearly as the
waiting count becomes larger. It is analogous to a bank cus-
tomer who has waited too long in line and will likely
switch to a different bank next time. However, only when
not taking PSS, we decide whether to take PRS or not with
probability Pr

i . If taking PRS, we randomly select a kernel
and a thread in a similar way to Algorithm 1. This too is
arithmetically simple and does not require predetermined
schedules.

3.1.5 Terminating a DANBI Program

In procedural languages, a program is terminated when the
program counter reaches the end. However, since the con-
trol flow of a DANBI application is sometimes determined
by queue status, terminating a DANBI program is different
from the methods used in procedural languages. When a
starting kernel is terminated, it propagates a termination
token through the output queues. A non-starting kernel is
terminated when it receives the termination tokens from all
input queues. When all starting and non-starting kernels
are terminated, a DANBI program is finally terminated.

However, there is no guarantee that the DANBI program
will be terminated when the queue size is inadequate or the
behavior of the feedback queue is uncontrolled. Even static
scheduling mechanisms have difficulty guaranteeing dead-
lock freedom with feedback queues [9], [29]. We argue that
a program with inadequate queue sizes or uncontrolled
feedback queues is an incorrect DANBI program.

3.2 Scalable Ticket Synchronization

Ticket synchronization operations are tightly integrated
with data queue operations. When a queue is initialized, a
ticket issuer and a ticket server for each endpoint of the
queue are created according to ticket descriptions in Table 1.
In reserve operations, ticket synchronization operations are
called according to the ticket descriptions for enforcing the
ordering of queue operations.

A ticket issuer is a counter which starts from zero and
increments by one in issue() operations. Also, a ticket
server is a counter which starts from zero and increments
by one. In is_my_turn() operations, we test if the issued
ticket passed by an argument matches to the ticket in a
ticket server to decide whether the caller can be served or
not. A thread which takes its turn performs a queue opera-
tion and then calls serve() to make the next thread served
by increasing the ticket server’s counter by one. A straight-
forward but inefficient design is to use a single counter vari-
able for a ticket server. However, since all competing
threads read the cacheline of the ticket server’s counter,
updating the counter invalidates all the shared cachelines.
Such frequent invalidation of shared cachelines could result
in contention meltdown in many-core systems [22], [23].

To avoid such contention meltdown, we design a ticket
server in such a way that each competing thread access a
separated cacheline in the is_my_turn() operation. In
Fig. 4, we show the pseudo code of our scalable ticket
server. At initialization, we first allocate an array of counters
whose size is the number of cores (line 7). Each competing
thread has a private counter in the array, which is deter-
mined by its issued ticket number (lines 13, 14). In the
serve() operation, the private counter of the next ticket
number is incremented by the number of cores for the next
thread to be served (lines 17 and 18). We initialize the first

Fig. 4. The pseudo-code of the ticket server.
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element to zero in order to serve the first issued ticket
immediately, and initialize the rest so as to serve them after
increasing the counters by the number of cores (lines 8-10).
In this design, since the is_my_turn() operation accesses
the privately owned cacheline and the serve() operation
modifies the cacheline of the next thread, we can minimize
the cacheline invalidation traffic and avoid the contention
meltdown in a high level of concurrency. We will investi-
gate the effectiveness of this design in Section 4.2.

4 EVALUATION

In this section, we evaluate various aspects of the DANBI
programming model and its runtime. We first describe our
benchmark applications and discuss our experience on the
DANBI programming model. Next, we evaluate the sched-
uling, footprint, and ticket synchronization of DANBI in
terms of scalability. Finally, we compare DANBI to other
parallel runtimes, StreamIt [1], OpenCL [3], and Cilk [4],
in terms of scalability and performance sensitivity in a
multiprogramming environment. To easily compare scal-
ability, all relative speedup values in this section are nor-
malized to the single-core performance of the DANBI
runtime in Fig. 5d.

We performed all experiments on a four-socket system
with a 10-core 2.0 GHz Intel Xeon E7-4850 (Westmere-EX)
processor (40 cores in total). The system has 256 KB of per-
core L2 caches and 24 MB per-processor L3 caches. Each
processor forms a NUMA domain with 8 GB of local mem-
ory (32 GB in total). The processors communicate through a
6.4 GT/s QPI interconnect. The machine runs 64-bit Linux
Kernel 3.2.0 with GCC 4.6.3.

4.1 Benchmark Suite

In order to broadly exercise the DANBI programming
model and runtime, we developed seven benchmark appli-
cations from other parallel programming models. Table 2

shows the characteristics of the benchmark applications and
Table 3 shows the input data sizes in our evaluation. All
benchmarks have plenty of parallelism: for all applications,
all kernels except Test Source and Test Sink are parallel
kernels, and all data queue operations are ordered by ticket
synchronization. We replaced file I/O operations in the
original benchmarks with memory operations to limit the
effect of the OS kernel. As a baseline for the evaluation, we
set the size of each data queue to maximally exploit data
parallelism (i.e., for all 40 threads to work on a queue).
More specifically, when a producer of a queue, Q, generates
maximum P -sized data at once, and a consumer of Q con-
sumes maximum C-sized data at once, the size ofQ is deter-
mined as maxðP � T; C � T Þ, where T is the number of
native threads assigned for the DANBI runtime. P and C
are naturally determinable by a problem itself: for example,
they would be the size of an image, one row or column of
an image for RG and SRAD, and the number of elements for
MergeSort. We will investigate how the queue size affects
the performance in Section 4.3.

We ported two compute-intensive benchmarks from
StreamIt benchmark suite [1], FilterBank and FMRadio,
with complex pipelines, and another two communication-
intensive benchmarks, FFT2 and TDE, with straight pipe-
lines. The numbers of kernels are different from the original
StreamIt benchmark suite, because the DANBI program-
ming model does not have a splitter/joiner [1], and we man-
ually fuse kernels with the same code. We could nearly
mechanically port StreamIt applications to DANBI applica-
tions, since the DANBI programming model supports all
the core functionalities of StreamIt, including peeking and
data ordering. The only manual work was to change the fil-
ter arguments in StreamIt to read-only buffers in the DANBI
programming model.

To investigate how recursive algorithms can effectively
be represented in the DANBI programming model, we
ported a parallel merge sort from Cilk [30].1 MergeSort
recursively splits sorted arrays into two, and then merges
the two concurrently [32]. As shown in Fig. 2, the recursive
spawn-sync parallelism in Cilk can be successfully trans-
formed into a DANBI program. Cilk functions synchro-
nized by a barrier are naturally mapped to DANBI parallel
kernels, and Cilk recursive functions can be represented
using feedback queues and ticket synchronization in the
DANBI programming model. Function arguments in Cilk
can be represented as either a read-only buffer or a ticket-
synchronized data queue depending on whether they are
changing in the middle of execution or not. In terms of
scheduling, MergeSort is the most challenging application
in our benchmark suite: there are data-dependent control
flows in every kernel, workload of each kernel is highly
biased (in our profiling, the Merge kernel takes the most

Fig. 5. Scalability of DANBI from 1 to 40 cores. Relative speedup is nor-
malized to the single-core performance in Fig. 5d.

1. We intentionally did not compare with a mergesort implementa-
tion of the StreamIt package [31]. The StreamIt differently prallelizes
the merge sort algorithm than DANBI and Clik do, so apple-to-apple
performance comparison is not possible. In the StreamIt version, the
recursion of the mergesort is flattened at the stream compile time
because the StreamIt runtime cannot execute cyclic graphs. So, as
the input size increases, stream graph and its compilation time also
increase non-linearly. To sort 4,096 integers, it takes about 29 hours to
generate a stream graph with 8,191 nodes.
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of the execution time), and there are few opportunities to
exploit pipeline parallelism due to the short pipeline.

RG and SRAD are data-parallel image filter applications
from OpenCL. They were ported from NVIDIA OpenCL
SDK [33] and the Rodinia suite [34], respectively. Porting
OpenCL applications to DANBI applications takes similar
effort to that of Cilk. Barrier synchronized OpenCL kernels
are naturally mapped to DANBI parallel kernels.

As discussed earlier, porting an existing parallel program
to a DANBI program is straightforward in many cases. As
shown in Table 2, in terms of lines of code (LOC), the most
tedious work is to connect queues and kernels. One of the
most difficult cases is that an original program does not
sequentially consume the input data. For example, inMerge-
Sort, when merging two chunks into one larger chunk, the
merge sort in Cilk first recursively divides the chunks into
multiple sub-chunks and then merges pairs of the sub-
chunks in parallel. In Cilk, the sub-chunks are represented
via indexes in the original chunk. However, in streaming
models including DANBI, data should be sequentially con-
sumed from an input queue. Thus, the additional rearrange-
ment of the pairs of the sub-chunks is needed to perform
parallel merging as in Cilk (the Split kernel in Fig. 2).
Though the additional rearrangement results in slower per-
formance of DANBI with a smaller number of cores, the
dynamic scheduling of DANBI eventually catches up the
performance with a larger number of cores. We will discuss
this in detail in Section 4.5.

4.2 Effectiveness of the Dynamic Load-Balancing
Scheduling

We ran each application by varying the number of cores
from 1 to 40. As we illustrated in Fig. 5, we ran each

application in four different scheduling configurations to
evaluate the effectiveness and scalability of the scheduling
techniques. In all the configurations, we used the scalable
ticket synchronization mechanism. The configuration in
Fig. 5a uses random work stealing which does not use the
producer-consumer relationships to make scheduling deci-
sions. For comparison, our baseline scheduling configura-
tion in Fig. 5b uses only the basic QES scheme. In addition
to that, in Figs. 5c and 5d, we adopt PSS and PRS, respec-
tively. For direct comparison of the graphs in Fig. 5, relative
speedup is normalized to the single-core performance in
Fig. 5d. For further analysis, Fig. 6 shows the execution
time breakdown for each application when using all 40
cores. Each bar is spilt into five categories, showing the frac-
tion of time spent in the application code, queue operation,
scheduler, stall, and OS kernel. In the DANBI runtime, the
stall means no work progress due to waiting for a commit
or ticket ordering. The breakdown is obtained with a cycle-
accurate low-overhead profiling code using a CPU time-
stamp counter and Linux perf record command [35]
which collects profiles based on sampling. Additionally,
Fig. 7 illustrates how each scheduling mechanism behaves
in the kernel scheduling of RG on 40 cores. The colors in
Figs. 7b, 7c, 7d, and 7e correspond to the colors of kernels
in Fig. 7a, except for black, which represents the stall cycle.

Random work stealing. As Fig. 5a shows, the scalability of
random work stealing is very dependent on the characteris-
tics of applications. The computation-intensive applications
such as FilterBank and SRAD scale nearly linearly with up
to 40 cores, whereas the performance of MergeSort and RG,
the least compute-intensive applications, starts to degrade
at 25 cores and 30 cores, respectively. That is because large
fractions of time are expended upon stalling: 19.0 percent
for MergeSort and 24.8 percent for RG, as shown in Figs. 6
and 7b. The increased stall increases fractions of the queue
operation time and the scheduler time. As a result, only

TABLE 2
Benchmark Descriptions and Characteristics

Benchmark Description Origin Kernel Queue Original LOC DANBI LOC

FilterBank Multirate signal processing filters StreamIt 44 58 267 1239 (448)
FMRadio FM Radio with equalizer StreamIt 17 27 175 775 (312)
FFT2 64 elements FFT StreamIt 4 3 181 537 (201)
TDE Time delay equalizer for GMTI StreamIt 8 7 749 976 (472)
MergeSort Merge sort Cilk 5 9 474 921 (654)
RG Recursive Gaussian image filter OpenCL 6 5 718 544 (304)
SRAD Diffusion filter for ultrasonic image OpenCL 6 6 2296 574 (304)

In parentheses, we present the LOCs without counting lines to connect queues and kernels.

TABLE 3
Benchmark Input Data Size and Running Time

Running time (QES+PSS
+PRS, msec)

Benchmark Input data
size (MB)

1-core 40-core

FilterBank 98 288,504 7,399
FMRadio 977 226,783 5,887
FFT2 14,648 228,613 6,610
TDE 14,832 507,566 16,835
MergeSort 3,815 243,072 10,569
RG 3,000 220,890 6,471
SRAD 5,000 199,018 5,416 Fig. 6. Execution time breakdown of DANBI on 40 cores. (W): Random

Work Stealing, (Q): QES, (S): (Q) + PSS, and (R): (S) + PRS.
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the small fractions are expended for the applications:
34.2 percent for MergeSort and 36.8 percent for RG. The
mean speedup over single-core performance is 25.3 times.
Our experimental results clearly show the limitations of ran-
dom work stealing on stream parallelism: suboptimal
scheduling decisions without using producer-consumer
relationships incur large overhead, especially in communi-
cation-intensive applications.

Queue event-based scheduling. By using the basic QES
scheme, the mean speedup improves from 25.3 to
28.9 times. Moreover, MergeSort and RG scale up to 30 and
35 cores, respectively. As Figs. 5b and 6 show, QES signifi-
cantly reduces the fraction of the stall: from 19.0 to 13.8 per-
cent for MergeSort and from 24.8 to 13.3 percent for RG.
Interestingly, the fractions of the queue are rather
increased. As mentioned in Section 3.1.3), QES tends to
maximize the degree of data parallelism as much as possi-
ble, and the high degree of data parallelism along with the
ticket synchronization could result in the thundering-herd
problem. In Fig. 7c, most threads work for a kernel at the
same time, and it increases the contention of the data
queues and the stall induced by ticket synchronization. The
large fraction of time for the queue operation and the stall
in Fig. 6 confirms this.

Probabilistic speculative scheduling. PSS effectively avoids
the thundering-herd problem by aggressively exploiting
pipeline parallelism over data parallelism. In the PSS sched-
uling in Fig. 7d, various kernels are executed at the same
time, and there are very few stall cycles, as shown in black.
As a result of this, the fractions of the queue operation and
the stall in RG are significantly reduced: from 51 to 14 per-
cent for the queue operation, and from 13.3 to 0.03 percent

for the stall. In the case of MergeSort, the performance is
marginally improved because there is little opportunity to
exploit pipeline parallelism. The mean speedup also
improves to 30.8 times.

Probabilistic random scheduling. In MergeSort, the time
taken for merging the sub-chunks heavily depends on the
size of the sub-chunks. Therefore, higher data parallelism of
the Merge kernel increases the chance of load imbalance,
since the different sized sub-chunks are likely to be merged
in parallel. Fig. 5d shows that PRS effectively mitigates the
load imbalance. The MergeSort speedup on 40 cores
improves from 19.2 times to 23.0 times. Also, the perfor-
mance of the two communication-intensive benchmarks,
FFT2 and TDE, are likely to be affected by fine-grain archi-
tecture variability such as with shared cache and NUMA.
Fig. 5d shows that PRS effectively adapts to such circum-
stances and thus improves the scalability: from 30.5 times to
34.6 times for FFT2 and from 23.6 times to 30.2 times for
TDE. Now, all applications scale up to 40 cores without sat-
uration. The mean speedup with all the optimizations is
33.7 times. On average, 91 percent of the benchmark time is
spent on the applications themselves. Table 3 shows the
input data sizes and the absolute running times in millisec-
onds on 1 and 40 cores.

In summary, random work stealing, which is widely
used, reveals the scalability limitations due to its blind-
ness to the producer-consumer relationships. Our experi-
mental results on QES and PSS show that exploiting the
producer-consumer relationships for making scheduling
decisions is critically important for achieving high scal-
ability. Particularly, PSS is quite effective to avoid the
thundering-herd problem by scheduling speculatively
before a data queue becomes completely full or empty.
Finally, PRS is effective at mitigating fine-grain load
imbalance. Our execution breakdown shows that the
DANBI runtime imposes very little overhead: on aver-
age, 3.9 percent for queue operation, 2.8 percent for the
scheduler, 1.5 percent for stall, and 1.1 percent for the
OS kernel. As a result, our dynamic scheduling has little
overhead to make scheduling decisions and outperforms
the static scheduling as shown in Figs. 5 and 11.

4.3 Footprint and Performance Sensitivity
of Queue Sizes

One of the interesting aspects in the DANBI runtime is the
footprint and its relationship to performance. The footprint
of a DANBI application is determined by the developer’s set-
tings for the data queue size. Also, the DANBI runtime
dynamically creates and destroys user-level threads as
needed. So the thread stack is a variable part in footprint. We
evaluate the average and maximum number of threads on
40 cores. Since 40 native threads are running on 40 cores, the

Fig. 7. Comparison of kernel scheduling for RG on 40 cores. The color in
Figs. 7b, 7c, 7d, 7e represents that the kernel with the same color in
Figs. 7a is running. For example, the yellow represents that Recursive-
Gaussian2 is running. The black color represents the stall cycle.

Fig. 8. Average and maximum number of user-level threads.
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minimum number of user-level threads is 40. As Fig. 8
shows, our thread life-cycle management mechanism incor-
porated with QES tightly manages the number of user-level
threads: 43 threads on average and 83 threads at maximum.

Our QES and PSS policies make scheduling decisions
based on how much each queue is filled. Therefore, the data
queue size could affect the scheduling decision. To evaluate
howmuch the queue size affects performance on 40 cores, we
vary the queue size to 1=3�; 2=3�; 2�, and 3� of the queue
size in Section 4.2. Fig. 9 shows that there are only marginal
performance variations of below 2 percent. It shows that our
scheduling mechanism can dynamically adapt to queue size
by changing the degree of data and pipeline parallelism.

4.4 Effectiveness of the Scalable Ticket
Synchronization

To verify how our scalable design of ticket synchronization
is effective, we compare scalability between the naive ticket
synchronization and the scalable one with all our schedul-
ing policies enabled. Fig. 10 clearly shows that our scalable
design is quite effective at avoiding performance collapse
by reducing frequent shared cacheline invalidation. Replac-
ing the scalable ticket synchronization to the naive one
drops the mean speedup from 33.7 times to 26.2 times. Par-
ticularly, we observed significant performance degradations
in RG, MergeSort, and FFT2, which are less computationally
intensive and which mostly rely on data parallelism due to
their short pipeline. In those applications, cycles per instruc-
tion (CPI) in the naive implementation is significantly
increased due to the frequent shared cacheline invalidation:
0.65 to 0.73 for FFT2, 1.11 to 5.26 for MergeSort, and 1.3 to
10.0 for RG.

4.5 Comparison with Other Parallel Runtimes

In this section, we compare the performance and scalability
of the DANBI runtime with the state-of-the-art parallel pro-
gramming runtimes. For fair comparison, we modified the

original benchmarks to perform I/O operations on memory
rather than files, and ran the benchmarks on the latest
available versions of the original runtimes. Fig. 11a shows
the speedup of the other runtimes normalized to the
DANBI single-core performance in Fig. 5d. Fig. 11b shows
the execution time breakdown in three categories: applica-
tion, parallel runtime, and OS kernel. In DANBI, the run-
time means the sum of the queue operation, scheduler, and
stall time in Fig. 6. The breakdown of the other runtime is
obtained by analyzing the collected profiles from Linux
perf record command [35].

StreamIt. The original version of FilterBank, FMRadio,
FFT2, and TDE ran on the latest StreamIt runtime obtained
from the code repository [31]. We used StreamIt SMP back-
end [1], which is optimized for shared-memory multicore
systems, with the highest optimization level (-O2). The
StreamIt compiler generates statically scheduled multi-
threaded C code with barrier synchronization, and the gen-
erated C codes are compiled with GCC 4.6.3. The mean
speedup of the four applications is 12.8 times. The perfor-
mance of FFT2 starts to be saturated at 5 cores, and that of
TDE is saturated at 15 cores. There is possibility that the
static scheduling without runtime scheduling overhead
could outperform our dynamic scheduling. However, since
the performance of modern many-core systems are difficult
to estimate, the suboptimal static schedules lead to the large
stalls and the limited scalability. As Fig. 11b shows, a large
portion of the execution time, 55 percent on average, is
spent in the runtime which is the barrier synchronization
overhead waiting for termination of all threads at each
steady-state schedule. Fig. 1 shows that as the thread count
increases, barrier synchronization overhead also rapidly
increases, while scalability rapidly decreases. It reveals the

Fig. 11. Scalability and execution time breakdown of other parallel runtimes. The relative speedup is normalized to the DANBI single-core perfor-
mance in Fig. 5d and the execution time is classified into Application, Runtime, and OS Kernel. In DANBI, the runtime is the sum of the queue opera-
tion, scheduler, and stall time in Fig. 6.

Fig. 10. Comparison of scalability between ticket synchronization
mechanisms.

Fig. 9. Performance variation under different queue sizes.
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limitations of static scheduling. As a result, while our
dynamic scheduling has additional overhead to make
scheduling decisions, it outperforms the static scheduling.
For the same applications, the DANBI runtime achieves
35.6-fold mean speedup while spending only 2.3 percent of
the execution time for the runtime.

Cilk. We ran the original version of MergeSort from MIT
[30] on the latest Intel Cilk Plus runtime [36]. Due to changes
in Cilk keywords, we made minor modifications. In Fig. 11a,
the performance improvement is saturated at 10 cores and
the performance begins to degrade at 20 cores. The fraction
of the OS kernel in the execution time increases non-linearly
as the thread count increases: for 10, 20, 30, and 40 cores, the
OS kernel takes 57.7, 72.8, 83.1, and 88.7 percent of execution
time, respectively. Contention on work stealing causes dis-
proportional growth of OS kernel time, mostly in the OS
scheduler, because Cilk scheduler calls pthread_yield()
when it fails to acquire a lock on a victim’s work queue. In
our experiments, the yielding count soars as the thread
count increases, to 1.1, 5.5, 18.1, 34.1, and 49.6 million for 5,
10, 20, 30, and 40 cores, respectively. Simply replacing yield-
ing with spinning does not help: spinning shows similar
scalability because the overhead in the OS scheduler simply
moves to the Cilk scheduler. It clearly shows the limitations
of blind random stealing in Cilk, which does not exploit the
producer-consumer relationships. With a small number of
cores, Cilk outperforms the DANBI runtime, because the
DANBI version of MergeSort requires one additional mem-
ory copy in the Spilt kernel, which splits two sorted arrays
into smaller chunks for a parallel merge. On 40 cores,
DANBI significantly outperforms Cilk, with 23-fold
speedup for DANBI and 11.5-fold speedup for Cilk.

OpenCL. RG and SRAD which originate from OpenCL
ran on the latest Intel OpenCL runtime [37]. Since the Intel
OpenCL runtime does not provide the functionality to
change the number of involved threads, we changed the
BIOS configuration of our test machine to change the num-
ber of cores. All of the allowable BIOS configurations are 4,
8, 16, 24, 32, and 40 cores. Fig. 11a shows that the perfor-
mance improvement of SRAD is saturated at 24 cores, and
the performance of RG starts to degrade at 16 cores. As the
core count increases, the fraction of runtime rapidly
increases: in the case of SRAD, runtime takes 6.7, 21.1, and
38.3 percent of the execution time on 8, 24, and 40 cores,
respectively. We found that more than 50 percent of the run-
time was spent in the work stealing scheduler of TBB [5],
which is an underlying framework of Intel OpenCL. On 40
cores, OpenCL versions of RG and SRAD achieve 14.6 and
14.1-fold speedups, respectively, while DANBI achieves a
significantly higher speedup: 34.1 and 36.8-fold speedup
with a significantly lower runtime overhead.

In summary, we found that achieving scalability in
many-core systems (40 cores in our experiment) is very
challenging even in state-of-the-art parallel runtimes.
StreamIt, Cilk, and OpenCL perform well with up to
approximately 15 cores, but they begin to struggle with
more than 20 cores. Moreover, bulk-synchronous style exe-
cution [38]—barrier synchronization between the steady-
state schedule in StreamIt, synchronization on returning
from recursion in Cilk, and synchronization between ker-
nels in OpenCL—shows larger scalability limitations as the
core count increases. In contrast, the dynamic load-balanc-
ing scheduling of the DANBI runtime enables nearly linear
scalable performance speedup, at least up to 40 cores.

4.6 Performance Sensitivity in a Multiprogramming
Environment

To more deeply understand the characteristics of the sched-
ulers, we ran our benchmarks on 40 cores with a disturbing
thread that infinitely performs arithmetic operations. The
disturbing thread is pinned to an arbitrary core. Its CPU
usage is limited to 90 percent by using cpulimit [39],
which controls the CPU usage of a process by continuously
sending it SIGSTOP and SIGCONT signals. The disturbing
thread makes benchmark threads on the core slow down by
10 times. Such performance degradation on a core could
seriously degrade the performance of a whole benchmark,
because the overall throughput of a pipeline is limited by
the slowest kernel [10], with 90 percent degradation in the
worst case.

In Fig. 12, we compare the relative speedup of the
DANBI and other parallel runtimes with and without
the disturbing thread. The performance degradation of the
DANBI runtime is significantly lower than that of other
parallel runtimes: on average, 20 percent for DANBI and
50 percent for other runtimes. Our experimental results
show that in the DANBI runtime, as a benchmark has
more kernels, its performance degradation is lower. The
performance degradation of FilterBank is the lowerst
(5.7 percent), followed by FMRadio (13.4 percent). As dis-
cussed in Section 4.1, the two benchmarks have many ker-
nels with complex pipelines. The correlation between the
number of kerenels and its peformance degradation comes
from two factors. First, since there is no fixed kernel-to-
core mapping, the impact of the disturbance spreads over
all kernels. Second, our dynamic load-balancing schedul-
ing, especially PRS, adapts well in this circumstance. As
Fig. 13 shows, the numbers of PRS taken at the disturbed
core (core 0) is significantly lower than those of the others.
That is because when a slow thread running on the dis-
turbed core and non-disturbed fast threads are running for

Fig. 12. Comparison of scalability on 40 cores while the disturbing thread
is running.

Fig. 13. The number of PRS taken in FilterBank. The disturbing thread
was pinned at core 0.
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the same kernel, the fast threads are likely to be scheduled
to another kernel by PRS due to their longer waiting cycles.
Therefore, in larger stream graphs with many kernels, we
can prevent the slow thread from being a performance bot-
tleneck by executing other kernels.

Among the parallel runtimes, StreamIt performs worst:
the average performance degradation of FilterBank, FMRa-
dio, FFT2, and TDE is 59.7 percent. The performances of
FilterBank and FMRadio, which show the smallest perfor-
mance degradation in the DANBI runtime, were degraded
most, by 89.9 and 49.8 percent, respectively. It shows that
the bulk synchronous execution of static schedules is brittle
in performance variability. The performance degradation
of OpenCL benchmarks, RG and SRAD, is 47.5 percent.
Since OpenCL kernels are barrier synchronized, the load
imbalance caused by the disturbed core significantly
degrades the overall performance. Finally, it is interesting
that Cilk shows only a negligible performance degradation
of 0.8 percent. As discussed in Section 5, under a high level
of concurrency, Cilk scheduler frequently calls pthread_

yield(), so the OS scheduler takes 88.7 percent of the
benchmark time to handle pthread_yield(). Since our
disturbing thread can be almost processed by the OS time
which was spent for pthread_yield() (i.e., it fails to
disturb), there is only negligigle performance degradation.

5 RELATED WORK

Data-flow oriented stream processing has received much
interest in the context of both many-core systems and dis-
tributed systems. We present a selection of papers most
related to our work.

Static scheduling in many-core systems. StreamIt [1] is a
representative stream programming model and runtime. It
follows the synchronous data flow model [40] which sup-
ports only regular applications with static input/output
rates. Scheduling is generated offline by the compiler based
on the estimation of the execution time and the communi-
cation requirement of each kernel [1], [9], [29]. However, as
shown in Fig. 1, it significantly suffers from load imbalance
when an application has data-dependent control flows or
the architecture has performance variability. Moreover,
since it iteratively executes the steady-state schedule in a
bulk-synchronous way with barrier synchronization, the
load imbalance tends to more severely affect scalability
with a larger number of cores.

Dynamic scheduling in many-core systems. SEDA [41] and
FDP [10] dynamically adjust the number of threads for a
stage. However, their scope of dynamic scheduling is lim-
ited to data parallelism. Flexible Filters [19] identifies bot-
tleneck filters through profiling of the application, and
accelerates the execution of the bottleneck filters by using
the back-pressure mechanism. SKIR [12] proposed a
dynamic scheduling mechanism based on work stealing
with the back-pressure mechanism, but it failed to achieve
scalability with more than 24 cores due to high communi-
cation cost and excessive dynamic scheduling overhead.
Though these two works provide load balancing on stream
programs, they support scheduling only on regular stream
programs. GRAMPS [7], [20] is the first runtime that sup-
ports dynamic scheduling of irregular stream programs. It

performs dynamic load balancing based on work stealing
with a per-kernel work queue and a back-pressure mecha-
nism. However, it does not support data ordering between
parallel stages because of the significant queue manipula-
tion overhead. It limits expressive power in parallel kernels
and imposes additional overhead for reordering the data at
the last sequential kernel. Moreover, GRAMPS does not
support peek operation, which is commonly used for slid-
ing window computation in many realistic stream applica-
tions [21], and experimental environments are relatively
limited to: an idealized simulator with no scheduling over-
head [7] and a 12-core, 24-thread machine [20]. Also, the
experimental results of GRAMPS [20] show that scalability
of TDE and FFT2, which were commonly used in DANBI
and GRAMPS, is worse that that of DANBI due to the
higher runtime overhead. Though the flow graph feature
in TBB [5] supports the dynamic scheduling of cyclic pipe-
lines, it does not support peek operation.

Dynamic scheduling in distributed systems. Elastic Opera-
tor [16] iteratively adjusts the level of data parallelism
based on peek throughput and measured throughput.
However, it is limited to dynamically changing the degree
of data parallelism. Borealis [14] provides sophisticated
local, neighborhood, and global scheduling optimizations,
but it assumes all components are stateless. ACES [15] first
optimizes schedules offline, and then dynamically adapts
the schedules based on buffer occupancy and processing
rates. However, it does not support the cyclic pipeline.
Moreover, it is based on the brittle assumption that proc-
essing rate is proportional to CPU utilization.

Topology unaware work stealing. Work stealing is a widely
used load balancing technique in many parallel runtimes
due to its fine-grained nature [4], [5], [42], [43]. It performs
well for programs with simple dependencies (e.g., fork-
join), but it works poorly on complex pipelines as it does
not exploit producer-consumer relationships.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduced the DANBI programming
model and its runtime design including the dynamic sched-
uling mechanisms for load balancing. The DANBI program-
ming model extends stream programming models to
support irregular programs. Our load-balancing scheduler
exploits producer-consumer relationships in a DANBI pro-
gram to generate scalable schedules. Moreover, we also pre-
sented two probabilistic scheduling policies which
effectively avoid the thundering-herd problem and dynami-
cally adapt to load imbalance. It surpasses prior static
stream scheduling approaches, which are vulnerable to load
imbalance, and prior dynamic stream scheduling
approaches, which have many restrictions on supported
program types, in the scope of dynamic scheduling, and on
preserving data ordering. In addition, we proposed our
scalable design of ticket synchronization which minimizes
the invalidation of shared cachelines. Our experimental
results show that DANBI achieves an almost linear speedup
with up to 40 cores, while other state-of-the-art parallel run-
times begin to have difficulty at around 15 or 20 cores. On
40 cores, DANBI outperforms StreamIt by 2.8 times, Cilk by
2 times, and Intel OpenCL by 2.5 times.
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Though the design goal of our current scheduling
schemes is to minimize CPU stalls, we could additionally
improve performance by taking care of data locality. In
NUMA architectures, previous studies show that it is criti-
cal to minimize contention on memory controller and inter-
connection at the same time [44], [45]. In larger number of
cores, optimization for memory accesses will be important
to achieve high scalability. We believe that there are many
opportunities to co-optimize scheduling policies and data
placement policies. Perhaps the biggest limitation of
DANBI is that its queue size is fixed. We expect that its
extension to a conceptually unbounded queue is straight-
forward: we envision a list of array ring queues which
automatically grow and shrink under certain occupancy
thresholds. We expect that our localized memory access
and array-based queue will enable DANBI’s easy portabil-
ity to other architectures, such as GPGPUs and Intel Xeon
Phi, with various memory models. We will need additional
architecture-specific optimizations, for example coalescing
memory accesses in GPGPUs, to get the best results.
Another interesting avenue of research would be optimiza-
tion for energy consumption; in environments such that it
is infeasible to accurately estimate energy consumption,
dynamic scheduling approaches would help. Despite of
the advantages of DANBI, in some environments, tradi-
tional static scheduling approaches would be better; static
scheduling would suits better real-time applications, where
performance predictability is important.
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