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Making Application-level Crash Consistency
Practical on Flash Storage

Dong Hyun Kang, Changwoo Min, Sang-Won Lee, and Young Ik Eom

Abstract—We present the design, implementation, and evaluation of a new file system, called ACCFS, supporting application-level crash
consistency as its first-class citizen functionality. With ACCFS, application data can be correctly recovered in the event of system crashes
without any complex update protocol at the application level. With the help of the SHARE interface supporting atomic address remapping
at the flash storage layer, ACCFS can easily and efficiently achieve crash consistency as well as single-write journaling. We prototyped
ACCFS by slightly modifying the full data journal mode in ext4, implemented the SHARE interface as firmware in a commercial SSD
available in the market, and carried out various experiments by running ACCFS on top of the SSD. Our preliminary experimental results
are very promising. For instance, the performance of an OLTP benchmark using MySQL/InnoDB engine can be boosted by more than
2–6x by offloading the responsibility of guaranteeing the atomic write of MySQL data pages from the InnoDB engine’s own journaling
mechanism to ACCFS. This impressive performance gain is in part due to the single-write journaling in ACCFS and in part comes from
the fact that the frequent fsync() calls caused by the complex update protocol at the application level can be avoided. ACCFS is a
practical solution for the crash consistency problem in that (1) the SHARE interface can be, like the TRIM command, easily supported by
commercial SSDs, (2) it can be embodied with a minor modification on the existing ext4 file system, and (3) the existing applications can
be made crash consistent simply by opening files in O_ATOMIC mode while the legacy applications can be run without any change.

Index Terms—File system-level consistency, application-level consistency, flash storage device, address remapping.

F

1 INTRODUCTION

TO guarantee the consistency of file metadata, data blocks,
and versions, modern file systems have heavily resorted

to various techniques such as journaling and copy-on-
write [1]. Unfortunately, they suffer from heavy read/write
amplification incurred by the mechanisms inherent in each
scheme, including redundant write [2], [3], segment clean-
ing [4], [5], and tree wandering [6]. Furthermore, because
they do not provide the higher application-level crash consis-
tency1 (hereafter, for short, crash consistency) [7], [8], [9], [10],
[11], many consistency-critical applications (e.g., MySQL [12],
SQLite [13], git, and VMware) should implement their own
idiosyncratic mechanisms for ensuring the secure recovery
of their data from unexpected crashes, which are, in some
cases, still crash-vulnerable [10], [11], [14].

Considering that flash memories are being used as main
storage, especially for performance critical applications, it is
an urgent and practical problem for file system communities
to develop flash-tailored solutions for higher consistency
level (e.g., crash consistency) and for higher performance
(e.g., no redundant write), by leveraging the new interface
such as SHARE. To this end, we address two problems in
file systems, IO amplification for data consistency and lack
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1. A file system allows upper-layer applications to explicitly guarantee

their own transactions without any interferences.

of crash consistency, especially focusing on ext4 journaling
mechanism, with the SHARE flash storage interface [15]. The
SHARE interface allows host programs to explicitly remap
one or more pairs of LBAs atomically at the flash storage
FTL layer. Though simple, it is very effective in eliminating
the overhead of redundant writes for guaranteeing atomic write,
excessive read/writes in compaction, and the tree-wandering prob-
lem in database applications such as MySQL DWB (double-
write buffer) [12] and Couchbase storage engine [15]. One
coincident and intriguing observation is that these database
overheads have essentially same characteristics with those
consistency overheads in modern file systems.

Based on this observation, in this paper, we propose
ACCFS (Application-Crash-Consistent File System), which ex-
tends the existing ext4 journaling file system naturally
and minimally so as to utilize the SHARE interface, thus
achieving both higher performance (i.e., no redundant writes)
and higher-level consistency (i.e., crash consistency). ACCFS
makes two main contributions: single-write journaling and
application-level crash consistency. For single-write journal-
ing, ACCFS provides SHARE-aware data journaling (SDJ)
mode, which can achieve the highest data consistency (i.e.,
version consistency [1]) at the same performance of ordered
journal (OJ) mode. We slightly modified the data journal
(DJ) mode in ext4 file system so that, after (metadata and
data) blocks have been successfully written in journal area,
a SHARE call for the multiple blocks is made, instead of
making pdflush daemon to write them redundantly in
their original locations. Thus, ACCFS can achieve high data
consistency with single write.

Next and more importantly, ACCFS guarantees the atomic
write of multiple scattered pages in either single or multiple
files opened with O_ATOMIC flag. We adopted the semantics
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of fsync() and syncv() calls slightly, added two new
system calls, abort() and abortv(), and modified the com-
mit/checkpoint/recovery operations in DJ mode (minimal
changes and very compatible to DJ mode). Without SHARE,
as will be detailed later, this light-weight implementation
of solid application-level crash consistency would not be
possible even with double-write journaling. While designing
ACCFS, we identified an interesting recovery property, called
A-property.

The focus of ACCFS is on crash consistency and thus
it leaves concurrency control management (i.e., isolation)
to the applications, as other file systems do [7], [8], [9],
[10], [11]. We prototyped ACCFS by modifying ext4 journal
(kernel version: 4.6.7) on top of a commercial SSD available
in the market, inside which we implemented the SHARE
interface as a firmware. Our preliminary evaluations confirm
that the effect of ACCFS is very promising. As an example,
when we ran an OLTP benchmark using MySQL/InnoDB
DBMS on top of ACCFS, we observed 6x TPS improvement
over the default configuration where the benchmark was
run with InnoDB engine’s own journaling mode (i.e., DWB:
double-write buffer2) enabled. This surprising performance
improvement can be explained as follows: by offloading the
responsibility of guaranteeing the atomic full page write
from InnoDB engine itself to ACCFS, it can halve the amount
of data being written to the flash storage, and can, more
importantly, reduce the number of fsync() system calls
by 16.4 times. Also in SQLite database, we observed that,
compared to the case when it was run in either RBJ (roll-
back journal) or WAL (write-ahead logging) mode with ext4
ordered-mode journaling, SQLite on ACCFS can achieve
better performance (by up to 3.3x) as well as the same crash
consistency even when its journaling mode is turned off.
From these results, we confirm that ACCFS can make many
consistency-critical applications high-performant and also
free from the burden of devising their own idiosyncratic
mechanisms for crash consistency. The benefits of ACCFS
can be summarized as follows:

1. TRIM-like: As will be shown in this paper, like the
well known TRIM command, which has successfully been
incorporated into major OS/file system kernel, 1) the SHARE
interface could be easily supported by commercial SSDs, 2)
ACCFS can be built with minimal extension on the existing
file systems (e.g., 300 lines added to DJ mode), and 3) it will
have high performance impact on a variety of applications.

2. Portability [10]: The existing legacy applications can
run under ACCFS without any modification, and they are
provided with higher data consistency. And, ACCFS allows
applications to be made crash consistent simply by adding
O_ATOMIC flag to fopen(). Both types of applications can
run concurrently under ACCFS.

In the rest of this paper, we will discuss background
(Section 2) and related work (Section 3). Next, we will present
the details of ACCFS design (Section 4) and implementation
(Section 5). Then, we will show our evaluation results
(Section 6). Next, to study the performance impact on
different file systems, we present the evaluation results of

2. It appends a new copy to the double-write-buffer and then
overwrites the old copy in its original location.
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Fig. 1: SHARE Interface.

ACCFS on a log-structured file system (Section 7). Finally,
we conclude the paper (Section 8).

2 FLASH MEMORY, FTL, AND SHARE
Because flash memory does not allow to update pages in
place, an out-of-place update strategy is commonly taken
by every flash storage devices. Thus, to maintain the ever-
changing mapping between logical addresses and physical
flash memory addresses, every flash storage device are
equipped with a firmware module called FTL (flash transla-
tion layer), and the fine-grained page-mapping approach is
popular mainly for performance reasons.

In order to leverage this indirection of page-level address
mapping in flash storage, recently in database community,
Oh et al. [15] proposed the SHARE interface. It exposes an
abstraction that allows host applications to explicitly ask
FTL to change the internal address mapping maintained
by FTL. To be concrete, as illustrated in Figure 1, upon
receiving a share command from the host with a pair of two
logical block addresses, LBA2 and LBA7, as its parameter,
FTL changes the PPN (physical page number) of LBA2 in its
page-mapping table to that of LBA7, thus the latter physical
page being shared by the former logical address. A share
command can have an optional third argument, length,
when the length of data to be shared is longer than the FTL
mapping granularity (i.e., 4KB). Though the description so far
assumes that a share command is associated with a single
pair of LBAs, it can have multiple LBA pairs in a batch. In
this case, FTL should be able to support the atomic address
remapping for the given set of LBA pairs upon a system crash
or power-off failure.

The SHARE interface, though simple, has proven to be
very effective in reducing the read/write amplification in
various database applications [15]: with the help of SHARE,
1) the atomic full page write, which is critical to MySQL
database, can be achieved without the double-write mecha-
nism in InnoDB engine, 2) the read/write amplification of the
compaction operation in NoSQL databases can be replaced
by zero-copy compaction, and 3) the write amplification
problem in CoW B-tree, so called tree-wandering, can be
avoided in Couchase NoSQL storage engine. One strong
motivation of our work on ACCFS is that journaling-based
file systems can also benefit from SHARE by applying the
single-write journaling of SHARE-aware InnoDB engine to
the ext4 data journal mode. The idea of applying SHARE
to file systems is not limited to journaling file system,
and would be also very helpful in optimizing the segment
cleansing overhead in log-structured file systems [4], [5] and
the tree-wandering problem in CoW B-tree file systems [6].
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3 RELATED WORK

The major challenge of both file systems and consistency-
critical applications is how to update their data objects
persistently even when a power loss or system crash occurs.
Many researchers in academia and industry focused on
studying the crash consistency mechanism that guarantees
the data objects on storage devices are left in a consistent state
even when system crash or power failure occurs after write
operations. In this section, we briefly review and compare
exiting researches that are closely related to our work: 1) file
system consistency and 2) application-level crash consistent
file systems.

3.1 File System Consistency
By using a variety of techniques such as journaling and copy-
on-write, modern file systems provide various consistency
levels including metadata, data, and version consistency [1].
However, the historical consistency techniques often raise
the issue of the performance drop because they have been
built on redundant I/O operations and synchronization
operations (e.g., fsync(), fdatasync(), and msync()).
Therefore, many prior works tried to efficiently solve the
performance challenges of consistency techniques in the file
system’s point of view [1], [16], [17], [18], [19]. For example,
RFLUSH [17] allows a fine-grained flush command to
reduce it’s processing time. Park et al. [19] introduced OFTL,
where it includes an ordering mechanism, to simplify the
journaling procedure. Besides, the system-wide consistency
currently provided by file systems is a broken abstraction
for application-level crash consistency [10]. Therefore, many
applications such as SQLite [13] and Vim [20] should craft
their own complex update protocols that ensure its data
to be correctly recovered upon unexpected system crash or
power failure, mainly by calling fsync() system calls for
ordering and durability. Unfortunately, they suffer from poor
performance due to frequent fsync() calls [1], [16], and
some of them are still even vulnerable to crashes [11].

Meanwhile, our SHARE-aware ACCFS is not the first
work on exploiting the address remapping for file system
optimization with the hardware support. To our knowledge,
JFTL [21] is the first approach to suggest the atomic address
remapping functionality in FTL so as to avoid the redundant
write overhead in journaling file system. In this sense, it
is the closest approach to ACCFS. But, unlike ACCFS, the
JFTL did not consider the application-level crash consistency
at all, and it uses a proprietary interface between the host
and flash storage for remapping the journaled data. Finally,
we argue that ACCFS is a principled and practical way to
change this landscape, which supports crash consistency as
its first-class citizen functionality inside the file system. In
addition, ACCFS can, with the help of SHARE, provide all
consistency levels at no cost of redundant writes.

3.2 Application-Level Crash Consistent File System
As far as we know, many crash consistent file systems have
been proposed: TxFlash [22], MARS [23], Failure-atomic
Msync [7], [8], CFS [9], and T2FS [24]. CFS is similar in
spirit to our ACCFS in that it achieves application-level crash
consistency by utilizing a transactional storage, called X-
FTL [25], which can atomically update multiple (scattered)

pages in place, and by extending an existing file system.
However, our ACCFS is more practical than prior works
in that SHARE is simple enough to be easily added to
the existing SSDs while X-FTL requires SSD to support
complex concepts including transaction identifier, commit,
and abort. Moreover, while CFS introduced new APIs such as
cfs_begin and cfs_end to define the transactional scope,
ACCFS utilizes existing APIs such as fsync() and syncv()
for that purpose. For this reason, existing applications can
be made more crash consistent with ACCFS rather than
CFS. Next, TxFlash [22] and MARS [23] have been built
on transactional storage systems to ensure the atomicity
property. Park et al. [7] proposed failure-atomic msync(),
which can atomically update the changes of an mmap-ed
file using REDO journaling. Verma et al. [8] extended the
work mainly in two directions; firstly, in order to avoid the
redundant writes, data blocks are managed in a CoW style,
and secondly, in order to support the failure-atomicity for
multiple files, they suggested the syncv() call. In particular,
the second work [8] is unique in two folds: 1) it demonstrates
that the crash consistency can be achieved without help of
special hardware, and 2) it proposes small but elegant set of
APIs for developing crash consistent applications. However,
its CoW style data management will newly introduce the
space fragmentation and thus may require costly garbage
collection overhead; CoW style amplifies write operations by
8x compared to ext4 in case of file overwrite [26]. In contrast,
our ACCFS is built with minimal changes in the existing
ext4 file system with the help of SHARE interface, and thus
we believe this would be more practical approach for crash
consistent file system.

4 DESIGN OF ACCFS
4.1 Overview
Guaranteeing crash consistency is one of the most important
factors in designing a file system. But, there is a trade-off
between consistency level and performance. For this reason,
the ext4 file system takes a relaxed consistency, i.e., the
ordered journaling mode (OJ), as its default mode. This mode
of OJ provides data consistency [1], which only guarantees
that metadata are entirely consistent to the data and that
the same data read by a file legitimately belongs to that file.
Therefore, under the OJ mode, a file can point to the older
version of its data, which is the source of the well-known
torn page problem in database systems. In contrast, the full
data journal mode (DJ) supports version consistency [1], where
the metadata version is guaranteed to match to the version
of the referred data. But, this higher consistency in the DJ
mode comes at the expense of considerable performance
degradation due to double-write journaling of data as well
as metadata.

Basically, ACCFS is based on ext4 journaling file system.
But, unlike ext4 file system, one of its main design goal is to
provide higher consistency at no compromise of performance.
To satisfy this goal, ACCFS takes advantage of the atomic
address remapping provided by SHARE interface at the flash
storage layer, thus offloading the burden of guaranteeing
system-wide version consistency from file system to flash
storage and, at the same time, achieving higher performance
almost for free without resorting to costly journaling scheme.
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Fig. 2: The overview of journaling process in ext4 and ACCFS
file systems.

In addition, by slightly modifying the existing data jour-
naling mode of ext4 and also causing no extra run-time
overhead, ACCFS can support higher application-level crash
consistency as its first-class citizen functionality, thus freeing
the application developers from the burden of devising a
complex and costly update protocol for application crash
consistency.

Figure 2 illustrates the overview of journaling process in
ext4 and ACCFS. As depicted in Figure 2, while the journaling
and commit processes in ACCFS are almost same to those
in ext4, the checkpoint process in ACCFS is in stark contrast
with that in ext4. While the second write of each journaled
block to its home location happens in ext4, the second write
of the same block is replaced by SHARE command in ACCFS.
ACCFS uses an auxiliary red-black tree, called A-tree (atomic-
tree), which helps to batch multiple journal writes into a
single share command by keeping a set of LBA pairs of
home location and journaled location on DRAM; a home
location is used as a key for the given LBA pair to handle
consecutive updates within one transaction. ACCFS uses
A-tree to make the checkpoint operation faster in SDJ and
to support isolation among multiple transactions in SADJ,
which we will discuss in more detail in the later sections.
When commit operation is triggered in ACCFS, each write
operation for journaling is first recorded in the journal area
and then the relevant LBA pair is inserted into the A-tree of
the SHARE interface. At each checkpoint, ACCFS generates
a share command by searching LBA pairs on the A-tree
belonging to the checkpoint transaction, and issues the
share command to the underlying storage. At this time,
the home locations in the storage are atomically shared
with the journaled locations at hardware level. Finally, for
the next checkpoint, the previous LBA pairs in the A-tree
are discarded. In this way, ACCFS can avoid unnecessary
overhead caused by redundant journaling writes, which we
call single-write journaling.

4.2 SHARE-aware Data Journaling (SDJ)

For efficient single-write journaling, ACCFS provides SHARE-
aware data journaling (SDJ) mode that can achieve system-
wide version consistency at the same performance of ordered
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Fig. 3: Comparison of journaling modes in ext4 and ACCFS.
In the scenario of the figure, two different files are updated
with small changes. Ext4 file system provides two journal
modes: ordered journaling mode (OJ) and full data journaling
mode (DJ). Checkerboard rectangles denote journaled blocks
into the journal area. OJ mode in ext4 guarantees a minimal
crash consistency: data and metadata of the file system will be
preserved in ordered manner and flushed to the home location at
checkpoint time (total 6 block writes). DJ mode in ext4 provides
version consistency: data and metadata of the file system are
synchronously logged into the journal area and then flushed
to the home location by periodic checkpoint operation (total
8 block writes). SDJ in ACCFS follows the default rules of DJ
mode except for checkpoint operation: data and metadata of the
file system are synchronously logged and then reflected to the
home location through SHARE interface (total 4 block writes
with 1 share command).

journal (OJ) mode. In this section, we show in detail how
SHARE interface can be leveraged to guarantee the highest
data consistency (i.e., version consistency). Figure 3 illustrates
the SDJ procedure in comparison with ordered journaling
(OJ) mode and data journaling (DJ) mode in ext4. When
a commit operation is triggered by time (e.g., 5 second) or
a synchronization operation (e.g., fsync(), fdatasync(),
and msync()), OJ mode first writes dirty pages (A′ and B′)
to their home locations3 and then synchronously writes a
journal descriptor (JD) block and metadata pages (MA′ and
MB′ ) to the journal area. The JD block has the home locations
of journaled metadata blocks [2] for recovery. After that, OJ
mode writes a journal commit (JC) block together with the
force unit access (FUA) command to the journal area, to
mark the end of a journal commit transaction. Note that
dirty metadata pages have not yet been written to the home
location. These metadata pages asynchronously flush to their
home location (MA′ and MB′ ) by either checkpoint or flush
daemon. On the other hand, upon a commit operation, DJ
mode in ext4 synchronously writes data (A′ and B′) and
metadata blocks (MA′ and MB′ ) with a JD block to the
journal area and then synchronously writes the JC block
together with FUA command to the journal area. Since the
same version of data and metadata blocks are in the journal
area, DJ mode completely guarantees the version consistency.

3. The dirty page writes are asynchronously issued but their comple-
tion should be enforced prior to writing a journal commit (JC) block
using an FUA command.
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Later upon a checkpoint operation, DJ mode asynchronously
writes dirty pages (A′, B′, MA′ , and MB′ ) to their home
location of journaled blocks.

SDJ in ACCFS follows the similar steps to the DJ mode
in ext4 until the commit operation is completed. At commit
time, unlike DJ mode, SDJ fetches the LBA address for the
home location (which keeps the persistent original data), and
the LBA address for the journaled location (which keeps
the up-to-date data) from the journal_head structure, after
each journal write would succeed. In other words, SDJ stores
the home location and journaled location as an LBA pair at
the commit time. A given LBA pair is inserted into the A-tree
with an integer key that is used to find the pair at checkpoint
time. Once a checkpoint operation is triggered (e.g., due to
no free space in the journal area, periodical time interval, or
an application’s calling a sync() system call), SDJ scans all
the nodes in A-tree to build a share command. Note that
SDJ can quickly build share commands by scanning the
A-tree. After finishing the checkpoint operation, SDJ discards
not only a set of LBA pairs, which were reflected to the
storage via the last share command, but also a set of invalid
LBA pairs that were invalidated during the last commit
operation. In this way, ACCFS builds more robust and
reliable system-wide version consistency while improving
the overall performance. Therefore, ACCFS uses SDJ as its
default consistency mechanism.

4.3 SHARE-aware Application-level Data Journaling
(SADJ)
For some applications such as databases and key-value
stores, even the system-wide version consistency by ext4
DJ mode, despite its double-write journaling, fails to meet
their stringent requirements for transactional atomicity.
For this reason, each application should devise its own
application-level crash consistency mechanism. However,
such application-level crash consistency mechanisms bring
about two problems. First, they usually suffer from poor
performance and the reduced lifespan of the underlying
flash storage mainly because of write amplification and
frequent fsync() calls from the application layer. Second,
the application-level update protocols are complex and
error-prone so that, as shown in recent studies [10], [11],
[14], there still exist some subtle bugs even in widely-
deployed applications. For example, SQLite has an update
transaction protocol that issues lots of fsync() operations
to consistently update its own database files. Unfortunately,
this complex update protocol is error-prone because the
fsync() operations are ignored willfully by the underlying
kernel stacks, such as file systems and device drivers, for
performance optimization. Therefore, it is imperative for
file systems to support application-level crash consistency
that has the same spirit of update transaction protocol of
applications.

In this section, we describe SHARE-aware application-
level data journaling (SADJ), which can provide application-
level crash consistency by slightly extending SDJ mode. It
was designed with the following two goals in mind:

• The interface for using SADJ should be simple and
intuitive so that application developers can easily adopt
it.
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Fig. 4: Two applications running on ACCFS. One process opens
file A with O_ATOMIC flag and the other process opens file B
without the flag. Upon commit time, ACCFS synchronously
writes data and metadata blocks into the journal area and inserts
pairs of LBAs into the A-tree. Upon checkpoint, the blocks
associated with file B (B′ and MB′ ) are reflected to the home
location using a share command. However, at checkpointing
file B, the blocks associated with file A (A′ and MA′ ) will not
be reflected to the home location. They will be reflected to the
home location by a fsync() operation of file A.

• Legacy applications should be able to run together with
SADJ-based one with small changes

For an application to run in SADJ mode in ACCFS, it can
use the failure-atomic update APIs (i.e., O_ATOMIC, syncv(),
and msync()) [7], [8]. Some applications (e.g., SQLite [13])
require abort() protocols to roll back the changes to the
most recent successful committed state. To this end, ACCFS
newly introduced abort() and abortv() systems calls.
Multiple files can be committed or roll-backed at once using
syncv() or abortv(), respectively. These APIs can be easily
incorporated to conventional applications with only a few
lines of code changes.

If an application opens a file with O_ATOMIC option, its
dirty pages are isolated from the normal journal pages that
are handled by SDJ mode. Therefore, when a checkpoint is
triggered by the pre-defined time (e.g., 5 minutes), the dirty
pages belonging to the file with O_ATOMIC not be reflected in
their home location. After that, if an application calls one of
the synchronization operations (e.g., fsync(), fdatasync(),
msync(), or syncv()), all dirty pages whose the file referred
by the synchronization operation are permanently recorded
to their home location in the atomic manner of "all or
nothing". In order to realize such isolated management,
there should exist a mechanism which allows us to easily
determine whether each dirty page (i.e. journaled block)
belongs to a file opened with O_ATOMIC or not. Therefore, we
add a new flag, called JBD2_A_FLAG, to both journal_head
structure and A-tree. Figure 4 briefly illustrates the sequence
of SADJ mode.

Now let us explain in detail how ACCFS can guarantee
both the application-level crash consistency and system-wide
version consistency with SHARE interface as shown Figure 5.

1. Journaling: Once a page on the page cache is written
by an application, its status is changed from clean to dirty
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(we call it a dirty page). Like ext4, SADJ in ACCFS inserts
information for each dirty page, which keeps file data, to the
running transaction.

2. Commit: At commit time, the running transaction is
updated to the commit transaction. SADJ synchronously
write all dirty pages of data and metadata belonging to the
committing transaction to the journal area in the storage; each
dirty page is mapped to one journal block in terms of ext4. To
correctly recover such journaled blocks after system crashes
or power failures, ext4 additionally records journal_heads
of each journal block to the journal area. While writing
each journal block to the journal area, SADJ checks whether
the dirty page belongs to the file that was opened with
O_ATOMIC, and in that case SADJ sets its JBD2_A_FLAG
inside journal_head structure and inserts a LBA pair with
JBD2_A_FLAG into A-tree.

3. Share: When checkpoint is triggered, SADJ first
searches for LBA pairs belonging to the checkpoint trans-
action in A-tree and then checks their JBD2_A_FLAG. If a
JBD2_A_FLAG is set, SADJ skips the LBA pair and move on to
the next for building share command. Finally, like SDJ, SADJ
also discards a set of invalid LBA pairs in A-tree. Note that
the skipped LBA pairs can be updated more than once until
the application issues a synchronization command. In other
words, LBAs that belong to an application-level transaction is
isolated from LBAs belonging to other concurrent filesystem-
level transactions.

4. Share (JBD2_A_FLAG): Meanwhile, a set of LBA pairs
whose JBD2_A_FLAG was set to 1 at commit time is sent to
the storage via share command when an application calls
fsync() to make the updates data of the file (which was
opened with O_ATOMIC) persistent. After issuing the share
command, SADJ discards those LBA pairs in A-tree for the
next synchronization operation.

5. Abort: When an application calls abort() against a
specific file, SADJ first searches for all dirty pages (which
belong to the file) on the page cache and then fetches each
journaled LBA address from the journal_head of each page.
Finally, SADJ disrupts a set of LBA pairs by scanning A-tree

for them using the searched LBA addresses. Note that SADJ
does nothing for rollback during storage operations because
journal blocks that contain data to be ignored were only
placed in the journal area. Those journal blocks will never be
reflected to the home locations because SADJ reuses them
based on a round-robin order.

4.4 Technical issues of ACCFS
In comparison to ext4, ACCFS raises two technical issues
about performance and correctness: optimal size of journal
area and identification of valid journal block. Let us discuss
each issue in turn.

Size of journal area: In ACCFS, the size of journal area
has a huge effect on the overall performance because ACCFS
triggers a checkpoint operation to reclaim journal blocks in
the storage when it runs out of journal space. And, since
ACCFS keeps data blocks as well as metadata blocks in the
journal area, this performance issue is exacerbated when it
uses the small-sized journal area (e.g., 128MB). In addition,
in terms of application-level crash consistency, perhaps
some applications would likely need large journal area
to guarantee their application-level consistency. To resolve
this issue caused by small-size journal area, we decided
to allocate rather large-sized journal area (e.g., 1GB) which
can be expected to preserve all data requiring application-
level crash consistency. Of course, one possible solution to
completely address the issue is to extend the fixed journal
area in a dynamic way. We will leave it for our future work.

Valid journal block identification: SADJ in ACCFS
should maintain some journal blocks (which we call valid
journal block) in the journal area for guaranteeing the
application-level crash consistency. However, those journal
blocks can be unintentionally over-written because a new
journal block is assigned in a round-robin manner. To prevent
such data corruption, SADJ allows skipping those journal
blocks and allocates a new journal block in the journal area;
this allocation is similar to the slack space recycle (SSR) of
F2FS [27]. To achieve this, SADJ looks for a new LBA address
in A-tree, which holds LBA addresses for all journaled blocks,
before assigning a new journal block. If the new LBA address
exist in A-tree, SADJ increments the LBA address until it
finds an LBA address that does not exist in A-tree (i.e., invalid
journal block). Fortunately, this situation rarely happens
because journal area of ACCFS (e.g., 1GB) is large enough to
guarantee application-level crash consistency without any
data corruption.

4.5 Recovery
In the event of system crash or application failure, ACCFS can
completely guarantees both system-wide version consistency
and application-level crash consistency. Basically, it takes
the roll-back recovery in the ext4 journaling scheme. But
the recovery process in ACCFS is unique in two aspects:
(1) SHARE-aware zero-copy for all committed blocks with
JBD2_A_FLAG disabled and (2) A-property, which states that
all JBD2_A_FLAG-ed blocks can be safely ignored during the
recovery process.

SHARE-aware zero-copy recovery: During the recovery,
for each journal commit block (JC) encountered while scan-
ning the journal area, ACCFS finds its corresponding journal
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descriptor (JD) block [2]. Then, for all non-JBD2_A_FLAG-
ed blocks between JD and JC, it generates and issues a
share command, which contains pairs of LBAs, so as to
keep data and metadata up-to-date. This step is repeated
until the last commit block is encountered in the journal area.
As in ext4, all the remaining blocks after the last commit
block can be safely ignored from the recovery perspective.
Considering that the redundant write of every journaled
block to its home location in ext4 is replaced by a zero-
copy share command in ACCFS, it is quite obvious that
ACCFS can recover much faster than ext4. Note that this
SHARE-based recovery process is idempotent and thus the
recovery process can be simply repeated when another crash
is encounter during the recovery.

A-property: Now let us explain the A-property which
is used in the recovery process of SADJ mode. It states
that every JBD2_A_FLAG-ed block in the journal area can
be safely ignored during the recovery. As stated above, at
the moment when an application calls fsync() against a
specific file, every data or metadata block with JBD2_A_FLAG
enabled belonging to the file will be propagated to its original
location in an atomic manner by a share command, which
will be executed only after the JC block for the fsync()
is synchronously saved in the journal area. Therefore, it is
guaranteed that all the blocks of a successfully fsync()-ed
file is propagated to their original location. In case when
the system crashed before the application is acknowledged
for the fsync() call, each block belonging to the file should
not be propagated to its original location. Consequently, all
the JBD2_A_FLAG-ed blocks could be simply skipped during
the recovery. Also, A-property makes it easy to implement
abort() and abortv() APIs because these APIs do not
need to remove the journaled blocks in the journal area at
the time of abort(). In summary, this property is essential
in making our ACCFS guarantee application-level crash
consistency in SADJ mode.

One interesting question with regard to A-property is
whether it can also be embodied in the existing data journal-
ing mode only if the concepts of A-tree and JBD2_A_FLAG
are introduced, and the answer is no. In fact, A-property
is a combined effect of taking all three techniques, A-tree,
JBD2_A_FLAG, and SHARE interface. Let us assume that a file
opened with O_ATOMIC is being updated by an application
and for any reason one or more JBD2_A_FLAG-ed blocks from
the file are already journaled before the application invokes
the fsync() call to make its recent update durable. In this
case, upon recovery, the existing data journal mode can not
decide whether those blocks should be copy-backed to their
original locations because it has no information regarding
whether the fsync() call for those blocks succeeded.

5 IMPLEMENTATION

We implemented ACCFS in Linux kernel 4.6.7 by modifying
about 400 lines of code (LoC) of ext4 and JBD2. We note
that other file systems supporting application-level crash
consistency [8], [9] need significant changes (e.g., 5,800 LoC
for CFS [9]), which inhibit wide and rapid adoption of
the new storage interface in practice. In ACCFS, A-tree is
implemented using a red-black tree maintaining mappings
between destination LBA and source LBA. To enable the
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Fig. 6: Performance comparison between ACCFS and ext4 for
FIO microbenchmark (128MB journal size). For each graph, the
x-axis shows fsync() interval that means the number of write
operations between two consecutive fsync().

O_ATOMIC flag, we partially ported the clone feature of CoW
to the A-tree of ACCFS since Verma et al. implemented the
same flag based on CoW-based file system [8], [28]. We also
added two new system calls, syncv() and abortv(), by
using ioctl facility of the Linux. The new system calls
are exposed to applications for transferring file descriptors
whose files were opened with O_ATOMIC flag. Implemen-
tation details of the O_ATOMIC flag and syncv() system
call can be found in [28] and [8], respectively. We also
realized the idea of SADJ mode by modifying MySQL and
SQLite. In general, MySQL and SQLite maintain a special
area (i.e., double-write-buffer, write-ahead logging or roll-back
journal) to prevent their database corruption; they write up-
to-date data its original location after recording the data into
the special area according to pre-defined conditions (e.g., an
eviction operation or time threshold). Therefore, we modified
MySQL and SQLite to make use of the share command in
processing the write operation at its original location. In
our implementation, each LBA of the database file is the
key associated with a share command, and thus the part
of the modified code keeps track of the mapping between
LBA address of the original location and LBA address of the
special area where it has up-to-date data. Some lines of new
codes were added to issue the share command instead of
the redundant write of data in the original location. Finally,
we also inserted the new codes related to database files to
enable O_ATOMIC flag.

We implemented a SHARE-enabled SSD by modifying
an FTL firmware of a commercial high-end PCIe M.2 SSD
supporting 360K and 280K IOPS for random read and write
operations, respectively. And, since no matching command
exists in current storage interface such as SATA and NVMe,
the share command has been added as a vendor unique
command (VUC) in the NVMe SSD. Implementation details
of the share command can be found in [15].

6 EVALUATION

For performance comparision, we ran all experiments on a
system with a quad-core processor (Intel i7-6700) and 8GB
memory. In this section, we present experiments that answers
following questions:
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• Does SDJ in ACCFS provide high performance while
guaranteeing the version consistency? (Section 6.1)

• How much can version consistency of SDJ help to improve
real application performance? (Section 6.2)

• How well does SADJ in ACCFS guarantee application-
level consistency? (Section 6.3)

6.1 Effect of ACCFS on Microbenchmarks

Normally, microbenchmark is widely used to evaluate the
performance impact of file systems. So, we used two mi-
crobenchmarks, Flexible I/O (FIO) [29] and Filebench [30]
benchmark, to compare ACCFS with the conventional ext4
file system. We compare three journal mode: ordered mode
(OJ) journal, data mode (DJ) journal, and SDJ in ACCFS.

FIO microbenchmark: We first evaluated ACCFS using
the FIO microbenchmark, which was configured to simulate
data-heavy workload. We performed random writes 10GB
of data with 8KB write granularity, and varied the number
of threads and files to better investigate the performance
of ACCFS. Since fsync() directly affects the amount of
journal data and the overall performance, we ran the same
pair of FIO with varying fsync() interval, which indicates
the number of write operations between two consecutive
fsync() calls.

Figure 6 presents the throughput in IOPS for all the
experiments when the journal size is 128MB, which is
default for the ext4 file system. As we expected, this figure
shows the notable performance gap between OJ and ACCFS.
The major reason of the performance gap is that ACCFS
frequently triggers checkpoint operations to reclaim journal
blocks in the storage as mentioned in Section 4.4, because
it preserves both data and metadata in the journal area
unlike OJ mode. To confirm this consideration at runtime, we
monitored the block traces by using Blktrace while running
the benchmark and figured out that ACCFS significantly
increases the number of fsync() operations for a short time.
For fair comparison, we extended the journal size to 1GB,
as in previous work [16] and again evaluated the same pair
of FIO (Figure 7). As expected, Figure 7a clearly shows that
ACCFS provides similar performance to OJ mode in all cases
while it guarantees the system-wide version consistency. In
addition, Figure 7b presents that the performance of ACCFS
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outperforms that of OJ mode by up to 2.16x. Meanwhile, one
interesting finding from the results is that OJ mode reveals
performance drop compared with DJ when it runs 10 FIO
threads with short fsync() intervals, such as 8, 16, and 32
interval. This is because OJ mode suffers from the scalability
issue of file systems [31] and random pattern writes. Another
interesting finding is that 1GB journal size for ACCFS is large
enough to hide the overhead (e.g., frequent checkpoints)
caused by the journal size while guaranteeing the system-
wide version consistency.

Filebench microbenchmark: To emulate real-world I/O
workload, we used the write-intensive Varmail and the read-
intensive Webserver workload. The Varmail consists of 16
concurrent threads to simulate a mail server and each thread
performs a set of create-append-sync and read-append-sync
operations. The Webserver workload is also composed of 100
threads, each of which sequentially reads a whole file and
then writes a small chuck of data. Figure 8 demonstrates the
throughput of Filebench. From this figure, we can confirm
that ACCFS works well in real-world workload. In addition,
Even when the journal size is 128MB, the performance
of ACCFS outperforms other modes in most cases. These
results do not match to those of Figure 6. Therefore, we
analyzed read and write performance, respectively. We found
two reasons behind such improvements. First, ACCFS can
improve the read performance by sequentially writing data
in the journal area. In other words, ACCFS can maximize
the effect of read-ahead within the flash storage (i.e., internal
parallelism). Second, ACCFS reduces the number of write
operations without any redundant write as shown in Figure 3.
This observation is indeed interesting because we had not
expected any improvement of read operations with SHARE
interface.

6.2 Effect of ACCFS on MySQL/InnoDB
The atomicity of each page write is a uncompromisable
assumption in database storage engines because a torn page
can not be restored even with the Aries-style recovery scheme.
However, since modern file systems and storage devices do
not generally guarantee page write atomicity, every database
engine has its own update protocol to prevent the torn page
problem. For example, the MySQL/InnoDB storage engine
takes a variant of journaling, called double-write-buffer (for
short, DWB) [12]: when a dirty page is replaced from the
buffer cache, its new copy is first appended to a separate
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Fig. 10: OLTP benchmark results of Sysbench using MySQL. The original MySQL versions were tested in three different
configurations: (1) DWB-ON/OJ(default), (2) DWB-OFF/DJ, and (3) DWB-OFF/OJ, while MySQL on ACCFS were in DWB-OFF/SADJ.

journal area, double-write-buffer, and then the old copy in its
original location is overwritten. In each step, an fsync() call
is made to enforce ordering and durability.

Because SADJ mode in ACCFS can guarantee the ver-
sion consistency, MySQL/InnoDB on ACCFS is safe from
the torn page problem even when the DWB mode is
turned off. And due to the system-wide version consis-
tency of ACCFS, the amount of writes to the storage is
halved, and hence the performance could be doubled.
Hence, to evaluate the effect of ACCFS on MySQL/InnoDB
database, we ran two popular OLTP benchmarks, Sys-
Bench [32] and LinkBench [33] under four different modes:
(1) DWB-ON/OJ(default), (2) DWB-OFF/DJ, (3) DWB-OFF/OJ,
and (4) DWB-OFF/SADJ(ACCFS-based version). Note that
the third mode DWB-OFF/OJ does not prevent the torn page
problem while the other three modes do.

Figure 9 presents the results obtained from running OLTP
benchmark of Linkbench using MySQL; we ran 4,800,000
operations for a 50 GB database (24 files) after a two minute
warm-up. In addition, Figure 10 shows the results from
running the Sysbench in OLTP mode; 10 GB database (20
files) with 40 million rows for 1,000,000 operations. In both
experiments, MySQL/InnoDB engine was configured to use
5 GB as a buffer pool with sixteen concurrent threads, and
all under buffered I/O mode. Finally, we deliberately added
the crash-inconsistent DWB-OFF/OJ mode to Figure 9 and

Figure 10 so as to stress that the ACCFS-based version
can outperform the crash-inconsistent mode in terms of
performance. As Figure 9a and Figure 10a show, the ACCFS-
based MySQL outperforms the default mode DWB-ON/OJ
by 6.16x and the second option DWB-OFF/DJ by 2.73x. This
performance gain is, as is clearly shown in Figure 9b and
Figure 10b, in part due to the reduction of write amount
by replacing the redundant write at either DWB or DJ mode
with ACCFS’s single-write journaling. However, the wider
performance gap between DWB-ON/OJ and DWB-OFF/SADJ
modes can not be explained solely with the write reduction.
The other main reason for the gap is the difference in the
number of disk flush operations invoked in two modes.
While the default DWB-ON/OJ mode, as explained before,
calls fsync() in every step of database file writes and
double-write-buffer write, the ACCFS-based version calls
one disk flush after writing all database files together. Thus,
as Figure 9c and Figure 10c show, the ACCFS-based version
invokes 16.4x less disk flush operations than the original
version. In summary, MySQL/InnoDB can, by offloading
the responsibility for preventing the torn page problem to
ACCFS, benefit significantly in terms of performance at no
compromise of data consistency.
6.3 Effect of ACCFS on SQLite
SQLite is a light-weight library based DBMS widely used in
mobile devices. Hence, unlike enterprise-class DBMS engines
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Fig. 11: SQLite Performance: RBJ vs. WAL vs. ACCFS. The original SQLite database (version 3.8.13) were tested under three
different modes : 1) RBJ/OJ(default), 2) WAL/OJ, and 3) WRITEBACK/SADJ. A set of three mobile workloads was used in the
experiment: Facebook, Gmail, and AndroBench.

such as MySQL, it takes a less complicated page-oriented
scheme for its transactional atomicity support: the force pol-
icy for commit and the steal policy for buffer replacement [25].
For this reason, when a transaction commits, all the updated
pages (from single or multiple files) by the transaction should
be atomically propagated to the storage. Please note that
this requirement is more stringent than the data consistency
provided in either ext4 DJ mode or MySQL/InnoDB’s DWB
scheme. Therefore, in order to meet this application-level
crash consistency, SQLite takes costlier journaling modes
of rollback journaling (RBJ) [34] and write-ahead-logging
(WAL) [35].

RBJ mode takes a undo-based journaling in that the original
content of a page is copied to the rollback journal before
updating the page. In contrast, the WAL mode takes a redo-
based journaling in that the original content is preserved in
the database and the modified page is appended to a write-
ahead-log file. The change is then later propagated to the
database by periodic checkpoint operation. Unfortunately,
the WAL mode can not, although faster than the RBJ mode,
guarantee the transactional atomicity when updates made by
a transaction are spanning over multiple database files [35],
and in this respect, it is an incomplete solution to the crash
consistency.

In order to evaluate the effect of ACCFS on SQLite
database, we ran a set of representative mobile traces
in three different SQLite modes, RBJ/OJ, WAL/OJ, and
WRITEBACK/SADJ. As noted earlier, our SDJ mode in ACCFS
can not meet the crash consistency requirement in SQLite and
thus the SAJD mode should be used instead. To guarantee
the crash consistency in WRITEBACK/SADJ mode, where
any journaling mode of SQLite is turned off, the only
change made in SQLite source code is to add O_ATOMIC
flag to an fopen() call which opens SQLite database files.
We used three SQLite traces, and one trace is a synthetic
AndroBench [36], and the other two real traces are collected
from running Facebook and Gmail applications on an
Andriod 4.1.2 Jelly Bean SDK. And the experimental results
are presented in Figure 11.

As shown in Figure 11, the ACCFS-based version out-
performs the two SQLite journaling modes consistently
over all three workloads by approximately 3.3x and 1.2x,
respectively. It is well known that the RBJ mode suffers
from its double-write journaling and excessive fsync()
calls [25], [37]: the frequent fsync() calls are in part due

to journal file creation/deletion per every transaction, and
are in part necessary to guarantee the durability of database
and journal files, and also to ensure the strict write ordering
between those two files. As a result, it is not surprising to see
from Figure 11b and Figure 11c that the original RBJ mode
generates about 3.8x more writes and 3.2x more disk cache
flush operations than the ACCFS-based version.

In the WAL mode, the updated pages are appended
to a WAL file and then they are later checkpointed to the
database file. For this reason, when the database size is
relatively small and the workload has clear locality in write
patterns, the write amplification in the WAL mode could
be significantly smaller than that in the RBJ mode. And
because the WAL file is reused once created, the fsync()
calls are not made so frequently as in the RBJ mode. As a
result, as shown in Figure 11b and Figure 11c, the WAL mode
generates less writes and disk cache flush operations than the
RBJ mode consistently over all three traces. This is why the
performance gap between ACCFS-based version and WAL
mode is rather marginal. However, it should be recalled that
the original WAL mode in SQLite does not guarantees the
crash consistency against multiple files, while ACCFS-based
SQLite and the RBJ mode do guarantee.

Before closing this subsection, we would like to stress
that with ACCFS, the existing application can be easily made
crash-consistent. Please recall that the SQLite WRITEBACK
mode becomes crash-consistent by adding one flag to the
fopen() call in SQLite. In contrast, in version 3.8.13 of
SQLite, the RBJ and WAL mode consist of about 14,500
lines of code, and CFS also requires to add 38 lines of its
system calls in SQLite source code [9].

7 DISCUSSIONS

ACCFS built on top of log-structured file system (LFS) [4].
In this section, we discuss the impact of SHARE command
on LFS. A log-structured writing is widely adopted on flash
storage devices, but it still suffers from inevitable segment
cleaning overhead to secure large chunks of free space.
Various techniques, such as data grouping [38], slack space
recycling [39], and in-place-update (IPU) mode in F2FS [27],
have been proposed, but none of them are free from the
burden of relocating valid blocks in victim segment. The
overhead, in contrast, can be almost completely eliminated by
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Fig. 12: Comparison between F2FS and ACCFS. While the
number of copy-backed pages is similar, ACCFS shows signifi-
cantly better performance by completely removing copy-back
during segment cleaning. ACCFS performs SHARE operations to
logically move pages without physical copying. For each graph,
the x-axis shows fsync() interval that means the number of
write operations between two consecutive fsync().

incorporating the SHARE interface into the segment cleans-
ing procedure in F2FS: the segment cleansing can complete
by simply calling the SHARE interface with old and new
LPNs of valid blocks as its parameters, instead of copying
valid blocks from a victim segment to a new segment. We
implemented ACCFS (i.e., SHARE-aware segment cleaning)
by modifying about 100 LoC of F2FS. For evaluation, we first
filled up the file system to make its utilization to 50% of total
space. Then, we performed experiments with FIO benchmark,
which was configured to perform random writes to 40% of
the total storage capacity, by varying fsync() interval from
8 to 128. Figure 12 shows the total number of moved pages
during the segment cleaning and the performance results of
each segment cleaning. Figure 12a shows how many valid
pages are moved during the segment cleaning. Interestingly,
when fsync() interval is 8, ACCFS and F2FS do nothing.
This is because current F2FS was modified to allow an in-
place update when the fsync() interval is smaller than
16. If the fsync() interval grows beyond 16, the segment
cleaning is triggered to move valid pages. As a result, ACCFS
outperforms F2FS by 10%–30% as shown in Figure 12b.
The reason behind the speed up is that ACCFS completely
removes the copy-back overhead of data blocks and only
updates metadata blocks, such as segment information table
and segment summary area.

8 CONCLUSION

We have presented ACCFS, which natively supports both
system-wide version consistency and the application-level crash
consistency on flash storage with an atomic address remap-
ping interface, called SHARE. Our ACCFS can relieve the
applications of the burden of guaranteeing their crash consis-
tency as well as data consistency, and boost the application
performance because of its single-write journaling and less
frequent fsync() calls from applications. Therefore, with
ACCFS, consistency-critical applications do not need to
devise complex, tardy, error-prone update protocols by
themselves. The existing applications can be run without
any changes under ACCFS, while enjoying the higher
data consistency, and they can easily be made application-
level crash-consistent simply by opening their data files in

O_ATOMIC mode. In addition, the single-write journaling in
ACCFS will double the life span of flash storage devices.
We have prototyped ACCFS by modifying ext4 file system
with only minimal changes, and also have implemented
the SHARE interface inside a commercial SSD as firmware.
Using the ACCFS prototype and the SHARE-enabled M.2
SSD, we have carried out a set of synthetic and realistic
benchmark tests. Our experimental results show that ACCFS-
based applications are 2–6x faster than their original versions.

Finally, in this paper, we presented the strength and
potential of ACCFS. Unfortunately, we acknowledge that
the applicability of ACCFS is quite limited as of now,
especially taking into account that it requires a holistic
modification across several layers. Though, the ACCFS-style
approach deserves to be encouraged in that its performance
improvement could be significant and its abstraction is rather
easily applicable to a wide set of file systems as well as
applications.
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